Skip to main content

Vaskuläre Erkrankungen

  • Chapter
  • 6470 Accesses

Zusammenfassung

Vaskuläre Erkrankungen gehören zu den häufigsten Krankheitsentitäten in der Neurologie. Herausragend ist dabei der ischämische Schlaganfall – nicht zuletzt aufgrund neuerer therapeutischer Entwicklungen. Dieses Kapitel gibt einen Überblick über die pathologischen Prozesse im Rahmen des ischämischen Schlaganfalls und geht darüber hinaus auch auf intrazerebrale Blutungen bzw. subarachnoidale Blutungen ein. Es werden die grundlegenden Mechanismen zur Regulation des zerebralen Blutflusses dargestellt. Zusätzlich wird auf die Dynamik intrakranieller Druckveränderungen eingegangen. Des Weiteren werden die häufigen Komplikationen nach akut aufgetretenen neurovaskulären Erkrankungen besprochen und deren pathophysiologischen Grundlagen erörtert.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literatur

Literatur zu Abschn. 1.1

  • Aikawa M, Libby P (2004) The vulnerable atherosclerotic plaque. Cardiovasc Pathol 13:125–138. doi:10.1016/S1054–8807(04)00004–3

  • Ainslie PN, Duffin J (2009) Integration of cerebrovascular CO2; reactivity and chemoreflex control of breathing: mechanisms of regulation, measurement, and interpretation. Am J Physiol Regul Integr Comp Physiol 296:R1473. doi:10.1152/ajpregu.91008.2008

    CAS  PubMed  Google Scholar 

  • Al-Ali F, Perry BC (2013) Spontaneous cervical artery dissection: the borgess classification. Frontiers Neur 4:133. doi:10.3389/fneur.2013.00133

  • Berlit P (Hrsg) (2014) Basiswissen Neurologie. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Charidimou A, Boulouis G, Gurol ME, Ayata C, Bacskai BJ, Frosch MP, Viswanathan A, Greenberg SM (2017) Emerging concepts in sporadic cerebral amyloid angiopathy. Brain doi:10.1093/brain/awx047

    PubMed  PubMed Central  Google Scholar 

  • Chen H, Yoshioka H, Kim GS, Jung JE, Okami N, Sakata H, Maier CM, Narasimhan P, Goeders CE, Chan PH (2011) Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection. Antioxidants Redox Signaling 14:1505–1517. doi:10.1089/ars.2010.3576

    CAS  Google Scholar 

  • Debette S (2014) Pathophysiology and risk factors of cervical artery dissection: what have we learnt from large hospital-based cohorts? Curr Opinion Neurol 27:20–28. doi:10.1097/WCO.0000000000000056

    PubMed  Google Scholar 

  • Del Sette M, Eliasziw M, Streifler JY, Hachinski VC, Fox AJ, Barnett HJ (2000) Internal borderzone infarction: a marker for severe stenosis in patients with symptomatic internal carotid artery disease. For the North American Symptomatic Carotid Endarterectomy (NASCET) Group. Stroke 31:631–636

    CAS  PubMed  Google Scholar 

  • Dichgans M (2007) Genetics of ischaemic stroke. Lancet Neurol 6:149–161. doi:10.1016/S1474–4422(07)70028–5

  • Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke; An integrated view. Trends in Neurosciences 22:391–397. doi:10.1016/S0166–2236(99)01401–0

  • Dohmen C, Sakowitz OW, Fabricius M, Bosche B, Reithmeier T, Ernestus R-I, Brinker G, Dreier JP, Woitzik J, Strong AJ, Graf R (2008) Spreading depolarizations occur in human ischemic stroke with high incidence. Ann Neurol 63:720–728. doi:10.1002/ana.21390

    PubMed  Google Scholar 

  • Doyle KP, Simon RP, Stenzel-Poore MP (2008) Mechanisms of ischemic brain damage. Neuropharmacology 55:310–318. doi:10.1016/j.neuropharm.2008.01.005

    CAS  PubMed  PubMed Central  Google Scholar 

  • Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95. doi:10.1152/physrev.00018.2001

    PubMed  Google Scholar 

  • Fann DY-W, Lee S-Y, Manzanero S, Chunduri P, Sobey CG, Arumugam TV (2013) Pathogenesis of acute stroke and the role of inflammasomes. Ageing Res Rev 12:941–966. doi:10.1016/j.arr.2013.09.004

    CAS  PubMed  Google Scholar 

  • Faxon DP, Fuster V, Libby P, Beckman JA, Hiatt WR, Thompson RW, Topper JN, Annex BH, Rundback JH, Fabunmi RP, Robertson RM, Loscalzo J (2004) Atherosclerotic Vascular Disease Conference: Writing Group III: pathophysiology. Circulation 109:2617–2625. doi:10.1161/01.CIR.0000128520.37674.EF

    PubMed  Google Scholar 

  • Filosa JA, Morrison HW, Iddings JA, Du W, Kim KJ (2016) Beyond neurovascular coupling, role of astrocytes in the regulation of vascular tone. Neuroscience 323: 96–109. doi:10.1016/j.neuroscience.2015.03.064

    CAS  PubMed  Google Scholar 

  • Gryglas A, Smigiel R (2017) Migraine and Stroke: What’s the Link? What to Do? Curr Neurol Neurosci Rep 17:22. doi:10.1007/s11910–017–0729-y

  • Hartings JA, Shuttleworth CW, Kirov SA et al. (2016) The continuum of spreading depolarizations in acute cortical lesion development: Examining Leao’s legacy. J Cerebral Blood Flow Metab . doi:10.1177/0271678X16654495

    Google Scholar 

  • Hossmann KA (1994) Viability thresholds and the penumbra of focal ischemia. Ann Neurol 36:557–565

    CAS  PubMed  Google Scholar 

  • Hossmann KA, Heiss WD (op. 2010) Neuropathology and pathophysiology of stroke. In: Brainin M, Heiss WD, Heiss S (Hrsg) Textbook of stroke medicine. Cambridge University Press, Cambridge, S 1–27

    Google Scholar 

  • Huang J, Upadhyay UM, Tamargo RJ (2006) Inflammation in stroke and focal cerebral ischemia. Surg Neurol 66:232–245. doi:10.1016/j.surneu.2005.12.028

    PubMed  Google Scholar 

  • Keith J, Gao F-Q, Noor R, Kiss A, Balasubramaniam G, Au K, Rogaeva E, Masellis M, Black SE (2017) Collagenosis of the Deep Medullary Veins: An Underrecognized Pathologic Correlate of White Matter Hyperintensities and Periventricular Infarction? J Neuropathol Exp Neurol 76:299–312. doi:10.1093/jnen/nlx009

    CAS  Google Scholar 

  • Li L, Yiin GS, Geraghty OC, Schulz UG, Kuker W, Mehta Z, Rothwell PM (2015) Incidence, outcome, risk factors, and long-term prognosis of cryptogenic transient ischaemic attack and ischaemic stroke; A population-based study. Lancet Neurol 14:903–913. doi:10.1016/S1474–4422(15)00132–5

  • Marsh BJ, Stenzel-Poore MP (2008) Toll-like receptors: novel pharmacological targets for the treatment of neurological diseases. Curr Opin Pharmacol 8:8–13. doi:10.1016/j.coph.2007.09.009

    CAS  PubMed  Google Scholar 

  • McBryde FD, Malpas SC, Paton JFR (2017) Intracranial mechanisms for preserving brain blood flow in health and disease. Acta Physiologica (Oxford, England) 219:274–287. doi:10.1111/apha.12706

    PubMed  Google Scholar 

  • McDonald JW, Bhattacharyya T, Sensi SL, Lobner D, Ying HS, Canzoniero LM, Choi DW (1998) Extracellular acidity potentiates AMPA receptor-mediated cortical neuronal death. J Neurosci 18:6290–6299

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meisel C, Schwab JM, Prass K, Meisel A, Dirnagl U (2005) Central nervous system injury-induced immune deficiency syndrome. Nature reviews. Neuroscience 6:775–786. doi:10.1038/nrn1765

    CAS  PubMed  Google Scholar 

  • Momjian-Mayor I, Baron J-C (2005) The pathophysiology of watershed infarction in internal carotid artery disease; Review of cerebral perfusion studies. Stroke 36:567–577. doi:10.1161/01.STR.0000155727.82242.e1

    PubMed  Google Scholar 

  • Muir KW, Buchan AM, Kummer R von, Rother J, Baron J-C (2006) Imaging of acute stroke. Lancet Neurol 5:755–768

    PubMed  Google Scholar 

  • Nilsson J, Hansson GK (2015) The changing face of atherosclerotic plaque inflammation. J Intern Med 278:430–432. doi:10.1111/joim.12403

    CAS  PubMed  Google Scholar 

  • Norenberg MD, Rao KVR (2007) The mitochondrial permeability transition in neurologic disease. Neurochem Int 50:983–997. doi:10.1016/j.neuint.2007.02.008

    CAS  PubMed  PubMed Central  Google Scholar 

  • Norrving B (op. 2010) Common causes of ischemic stroke. In: Brainin M, Heiss WD, Heiss S (Hrsg) Textbook of stroke medicine. Cambridge University Press, Cambridge

    Google Scholar 

  • Pantoni L (2002) Pathophysiology of age-related cerebral white matter changes. Cerebrovasc Dis (Basel, Switzerland) 13 Suppl 2:7–10

    PubMed  Google Scholar 

  • Pantoni L (2010) Cerebral small vessel disease; From pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 9:689–701. doi:10.1016/S1474–4422(10)70104–6

  • Prass K, Meisel C, Hoflich C, Braun J, Halle E, Wolf T, Ruscher K, Victorov IV, Priller J, Dirnagl U, Volk H-D, Meisel A (2003) Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1-like immunostimulation. J Exp Med 198:725–736. doi:10.1084/jem.20021098

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schievink WI (2001) Spontaneous dissection of the carotid and vertebral arteries. New Engl J Med 344:898–906. doi:10.1056/New Engl J Med200103223441206

  • Shin HK, Dunn AK, Jones PB, Boas DA, Moskowitz MA, Ayata C (2006) Vasoconstrictive neurovascular coupling during focal ischemic depolarizations. J Cerebral Blood Flow Metab 26:1018–1030. doi:10.1038/sj.jcbfm.9600252

    Google Scholar 

  • Singhal AB, Biller J, Elkind MS, Fullerton HJ, Jauch EC, Kittner SJ, Levine DA, Levine SR (2013) Recognition and management of stroke in young adults and adolescents. Neurology 81:1089–1097. doi:10.1212/WNL.0b013e3182a4a451

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stol M, Hamann GF (2002) Die zerebrovaskuläre Reservekapazität. Nervenarzt 73:711–718. doi:10.1007/s00115–002–1313–4

  • Strong AJ, Anderson PJ, Watts HR, Virley DJ, Lloyd A, Irving EA, Nagafuji T, Ninomiya M, Nakamura H, Dunn AK, Graf R (2007) Peri-infarct depolarizations lead to loss of perfusion in ischaemic gyrencephalic cerebral cortex. Brain 130:995–1008. doi:10.1093/brain/awl392

    Google Scholar 

  • Vertinsky AT, Schwartz NE, Fischbein NJ, Rosenberg J, Albers GW, Zaharchuk G (2008) Comparison of multidetector CT angiography and MR imaging of cervical artery dissection. AJNR. American journal of neuroradiology 29:1753–1760. doi:10.3174/ajnr.A1189

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vidale S, Consoli A, Arnaboldi M, Consoli D (2017) Postischemic Inflammation in Acute Stroke. J Clin Neurol (Seoul, Korea) 13:1–9. doi:10.3988/jcn.2017.13.1.1

    PubMed  Google Scholar 

  • Volker W, Dittrich R, Grewe S, Nassenstein I, Csiba L, Herczeg L, Borsay BA, Robenek H, Kuhlenbaumer G, Ringelstein EB (2011) The outer arterial wall layers are primarily affected in spontaneous cervical artery dissection. Neurology 76:1463–1471. doi:10.1212/WNL.0b013e318217e71c

    CAS  PubMed  Google Scholar 

  • Willeit J, Kiechl S (2000) Biology of arterial atheroma. Cerebrovasc Dis (Basel, Switzerland) 10 Suppl 5:1–8

    PubMed  Google Scholar 

Literatur zu Abschn. 1.2

  • Anderson CS et al. (2013) Rapid Blood-Pressure Lowering in Patients with Acute Intracerebral Hemorrhage. New England J Medicine 368: 2355–2365

    Google Scholar 

  • Bergström P et al. (2016) Amyloid precursor protein expression and processing are differentially regulated during cortical neuron differentiation. Sci Rep 6: 29200. doi: 10.1038/srep29200

  • Boulouis G, Charidimou A, Greenberg SM (2016) Sporadic Cerebral Amyloid Angiopathy: Pathophysiology, Neuroimaging Features, and Clinical Implications. Semin Neurol 36: 233–243

    PubMed  Google Scholar 

  • Charidimou A, Boulouis G, Gurol ME, Ayata C, Bacskai BJ, Frosch MP, Viswanathan A, Greenberg SM (2017) Emerging concepts in sporadic cerebral amyloid angiopathy. Brain 140 (7):1829-1850 Review

    PubMed  PubMed Central  Google Scholar 

  • Charidimou A, Gang Q Werring DJ (2012) Sporadic cerebral amyloid angiopathy revisited: recent insights into pathophysiology and clinical spectrum. J Neurol Neurosurg Psychiat 83: 124–137

    Google Scholar 

  • Etminan N, Rinkel GJ (2016) Unruptured intracranial aneurysms: development, rupture and preventive management. Nat Rev Neurol 12(12): 699–713

    PubMed  Google Scholar 

  • Fisher CM (1971) Pathological observations in hypertensive cerebral hemorrhage. J Neuropathol Exp Neurol 30: 536–550

    CAS  PubMed  Google Scholar 

  • Greenberg, S. M. et al. (1998) Association of apolipoprotein E epsilon2 and vasculopathy in cerebral amyloid angiopathy. Neurology 50: 961–965

    CAS  PubMed  Google Scholar 

  • Hu X et al. (2016) Oxidative Stress in Intracerebral Hemorrhage: Sources, Mechanisms, and Therapeutic Targets. Oxid Med Cell Longev 3215391. doi: 10.1155/2016/3215391

    Google Scholar 

  • Katsu M et al. (2010) Hemoglobin-induced oxidative stress contributes to matrix metalloproteinase activation and blood-brain barrier dysfunction in vivo. J. Cereb. Blood Flow Metab 30: 1939–1950

    CAS  Google Scholar 

  • Lammie G (2002) A. Hypertensive cerebral small vessel disease and stroke. Brain Pathol. 12, 358–370

    Google Scholar 

  • Lim-Hing K, Rincon F (2017) Secondary Hematoma Expansion and Perihemorrhagic Edema after Intracerebral Hemorrhage: From Bench Work to Practical Aspects. Front Neurol Apr 7; Review

    Google Scholar 

  • Pantoni L (2010) Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 9 (7): 689–701. Review

    PubMed  Google Scholar 

  • Qureshi AI, Mendelow AD, Hanley DF (2009) Intracerebral haemorrhage. Lancet 373, 1632–1644

    Google Scholar 

  • Qureshi AI, Palesch YY, Martin R, Toyoda K, Yamamoto H, Wang Y, Wang Y, Hsu CY, Yoon BW, Steiner T, Butcher K, Hanley DF, Suarez JI (2014) Interpretation and Implementation of Intensive Blood Pressure Reduction in Acute Cerebral Hemorrhage Trial (INTERACT II). J Vasc Interv Neurol 7 (2): 34–40

    Google Scholar 

  • Rosenblum WI (2008) Fibrinoid necrosis of small brain arteries and arterioles and miliary aneurysms as causes of hypertensive hemorrhage: a critical reappraisal. Acta Neuropathol 116 (4): 361–9. doi: 10.1007/s00401–008–0416–9

  • Schünke M, Schulte E, Schumacher U, Voll M, Wesker K (2006) Prometheus LernAtlas der Anatomie, Kopf und Neuroanatomie. Thieme, Stuttgart

    Google Scholar 

  • Sun X Chen WD, Wang YD (2015) β-Amyloid: the key peptide in the pathogenesis of Alzheimer’s disease. Front Pharmacol 6: 221

    Google Scholar 

  • Wardlaw JM (2010) Blood-brain barrier and cerebral small vessel disease. J Neurol Sci 299: 66–71

    CAS  PubMed  Google Scholar 

  • Weller RO, Subash M, Preston SD, Mazanti I, Carare RO (2008) Perivascular drainage of amyloid-beta peptides from the brain and its failure in cerebral amyloid angiopathy and Alzheimer’s disease. Brain Pathol 18 (2): 253–66

    Google Scholar 

  • Wu TY, Sharma G, Strbian D, Putaala J, Desmond PM, Tatlisumak T et al. (2017) Natural history of perihematomal edema and impact on outcome after intracerebral hemorrhage. Stroke 48 (4): 873–879

    PubMed  Google Scholar 

  • Xi G Keep RF, Hoff JT (2006) Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol 5: 53–63

    PubMed  Google Scholar 

Literatur zu Abschn. 1.3

  • Archavlis E, Nievas M (2013) Cerebral vasospasm: a review of current developments in drug therapy and research. J Pharm Technol Drug Res 2: 18

    Google Scholar 

  • Bosche B, Graf R, Ernestus R-I et al. (2010) Recurrent spreading depolarizations after subarachnoid hemorrhage decreases oxygen availability in human cerebral cortex. Ann Neurol 67: 607–617

    PubMed  PubMed Central  Google Scholar 

  • Brandon A. Miller, Turan N, Chau M et al. (2014) Inflammation, vasospasm and brain Injury after subarachnoid hemorrhage. BioMed Research Int. 2014

    Google Scholar 

  • Cahill J, Cahill WJ, Calvert JW, Calvert JH, Zhang JH (2006) Mechanisms of early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab (11): 1341–53

    Google Scholar 

  • Chen S, Feng H, Sherchan P, Klebe D, Zhao G, Sun X et al. (2014) Controversies and evolving new mechanisms in subarachnoid hemorrhage. Prog Neurobiol 115: 64–91

    PubMed  Google Scholar 

  • Chen S, Luo J, Reis C et al. (2017) Hydrocephalus after subarachnoid hemorrhage: pathophysiology, diagnosis, and treatment. BioMed Research Int 2017: 8584753. doi: 10.1155/2017/8584753

    Google Scholar 

  • Claassen J (2017) Spreading depolarization and acute ischaemia in subarachnoid haemorrhage: the role of mass depolarization waves. Brain 140; 2527–2529

    PubMed  Google Scholar 

  • Cossu G, Messerer M, Oddo M et al. (2014) To look beyond vasospasm in aneurysmal subarachnoid haemorrhage. BioMed Research Int 2014: 628597. doi: 10.1155/2014/628597

    Google Scholar 

  • Dorsch N, King M (1994) A review of cerebral vasospasm in aneurysmal subarachnoid haemorrhage Part I: incidence and effects. J Clin Neurosci 1: 19–26

    CAS  PubMed  Google Scholar 

  • Dreier J, Major S, Manning A et al. (2009) Cortical spreading ischaemia is a novel process involved in ischaemic damage in patients with aneurysmal subarachnoid haemorrhage. Brain 132;1866–1881

    PubMed  PubMed Central  Google Scholar 

  • Edvinsson L (2009) Cerebrovascular endothelin-receptor upregulation in cerebral ischemia. Curr Vasc Pharmacol 7: 26–33

    CAS  PubMed  Google Scholar 

  • Etminan N, Rinkel GJ (2016) Unruptured intracranial aneurysms: development, rupture and preventive management. Nat Rev Neurol 12 (12): 699–713

    PubMed  Google Scholar 

  • Fassbender K, Hodapp B, Rossol S et al. (2000) Endothelin-1 in subarachnoid hemorrhage: An acute-phase-reactant produced by cerebrospinal-fluid leukocytes. Stroke 31: 2971–2975

    PubMed  Google Scholar 

  • Fisher C, Roberson G, Ojemann R (1977) Cerebral vasospasm with ruptured saccular aneurysm - the clinical manifestations. Neurosurgery 1 (3): 245–248

    CAS  PubMed  Google Scholar 

  • Friedrich V, Flores R, Sehba FA (2012) Cell death starts early after subarachnoid hemorrhage. Neurosci Lett 512 (1): 6–11

    CAS  PubMed  PubMed Central  Google Scholar 

  • Greitz D (2002) On the active vascular absorption of plasma proteins from tissue: rethinking the role of the lymphatic system. Med Hypoth 59: 696–702

    CAS  PubMed  Google Scholar 

  • Greitz D (2004) Radiological assessment of hydrocephalus: new theories and implications for therapy. Neurosurg Rev 27: 145–165

    Google Scholar 

  • Greitz D (2004) The hydrodynamic hypothesis versus the bulk flow hypothesis. Neurosurg Rev 27: 299–300

    Google Scholar 

  • Hacke W (Hrsg) (2016) Neurologie, 14. Auflage. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hartings J, York J, Carroll C et al. (2017) Subarachnoid blood acutely induces spreading depolarizations and early cortical infarction. Brain 140: 2673–2690

    PubMed  PubMed Central  Google Scholar 

  • Kikkawa Y, Matsuo S, Kameda K et al. (2012) Mechanisms underlying potentiation of endothelin-1-induced myofilament Ca (2+)-sensitization after subarachnoid hemorrhage. J Cereb Blood Flow Metab 32: 341–52

    Google Scholar 

  • Krishnamurthy S, Li J (2014) New concepts in the pathogenesis of hydrocephalus. Transl Pediatr 3 (3): 185–194

    Google Scholar 

  • Kusaka G, Ishikawa M, Nanda A, Granger DN, Zhang JH (2004) Signaling Pathways for Early Brain Injury after Subarachnoid Hemorrhage. J Cereb Blood Flow Metab 24 (8): 916–25

    CAS  Google Scholar 

  • Lauritzen M, Dreier J, Fabricius M et al. (2011) Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury. J Cereb Blood Flow Metab 31: 7–35

    Google Scholar 

  • Lin C-L, Dumont A, Zhang J et al. (2014) Cerebral vasospasm after aneurysmal subarachnoid hemorrhage: mechanism and therapies. BioMed Research Int 2014: 679014. doi: 10.1155/2014/679014

    Google Scholar 

  • Macdonald L, Kassell N, Mayer S et al. (2008) Clazosentan to overcome neurological ischemia and infarction occurring after subarachnoid hemorrhage (CONSCIOUS-1): randomized, double-blind, placebo-controlled phase 2 dose-finding trial. Stroke 39 (11): 3015–3021

    CAS  PubMed  Google Scholar 

  • Macdonald RL, Schweizer TA (2017) Spontaneous subarachnoid haemorrhage. Lancet Lond Engl 389 (10069): 655–66

    Google Scholar 

  • Meng H, Tutino VM, Xiang J, Siddiqui A (2014) High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis. AJNR Am J Neuroradiol 35 (7): 1254–62

    PubMed  Google Scholar 

  • Miller BA, Turan N, Chau M, Pradilla G (2014) Inflammation, vasospasm, and brain injury after subarachnoid hemorrhage. BioMed Res Int 2014: 384342

    Google Scholar 

  • Munoz-Guilléna N, León-Lópeza R, Túnez-Finanab I et al. (2013) From vasospasm to early brain injury: New frontiers in subarachnoid haemorrhage research. Neurologia 28 (5): 309–316

    Google Scholar 

  • Petridis AK, Kamp MA, Cornelius JF, Beez T, Beseoglu K, Turowski B et al. (2017) Aneurysmal Subarachnoid Hemorrhage. Dtsch Ärztebl Int 114 (13): 226–36

    Google Scholar 

  • Pluta R (2008) Dysfunction of nitric-oxide-synthases as a cause and therapeutic target in delayed cerebral vasospasm after SAH. Acta Neurochir Suppl 104: 139–47

    Google Scholar 

  • Prunell G, Svendgaard N, Alkass K et al. (2005) Inflammation in the brain after experimental subarachnoid hemorrhage. Neurosurgery 56: 1082–1092

    Google Scholar 

  • Rainov N, Weise J, Burkert W (2000) Transcranial doppler sonography in adult hydrocephalic patients. Neurosurg Rev 23: 34–38

    CAS  PubMed  Google Scholar 

  • Rowland M, Hadjipavlou G, Kelly M et al. (2012) Delayed cerebral ischaemia after subarachnoid haemorrhage: looking beyond vasospasm. Br J Anaesth 109 (3): 315–29

    CAS  PubMed  Google Scholar 

  • Schmieder K, Möller F, Engelhardt M, Scholz M, Schregel W, Christmann A et al. (2006) Dynamic cerebral autoregulation in patients with ruptured and unruptured aneurysms after induction of general anesthesia. Zentralbl Neurochir 67 (2): 81–7

    CAS  PubMed  Google Scholar 

  • Serrone JC, Maekawa H, Tjahjadi M, Hernesniemi J (2015) Aneurysmal subarachnoid hemorrhage: pathobiology, current treatment and future directions. Expert Rev Neurother 15 (4): 367–80

    CAS  PubMed  Google Scholar 

  • Stephensen H, Tisell M, Wikkelsö C (2002) There is no transmantle pressure gradient in communicating or noncommunicating hydrocephalus. Neurosurgery 50: 763–771

    PubMed  Google Scholar 

  • van Lieshout JH, Dibué-Adjei M, Cornelius JF, Slotty PJ, Schneider T, Restin T et al. (2017) An introduction to the pathophysiology of aneurysmal subarachnoid hemorrhage. Neurosurgery. doi: 10.1007/s10143–017–0827-y

  • Winkler M, Chassidim Y, Lublinsky et al. (2012) Impaired neurovascular coupling to ictal epileptic activity and spreading depolarization in a patient with subarachnoid hemorrhage: possible link to blood-brain barrier dysfunction. Epilepsia 53: 22–30

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Angermaier , R. Rehmann , M. Kitzrow , A. Angermaier , R. Rehmann , M. Kitzrow , R. Rehmann or M. Kitzrow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Cite this chapter

Angermaier, A., Rehmann, R., Kitzrow, M. (2019). Vaskuläre Erkrankungen. In: Sturm, D., Biesalski, AS., Höffken, O. (eds) Neurologische Pathophysiologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56784-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-56784-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-56783-8

  • Online ISBN: 978-3-662-56784-5

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics