Advertisement

Mathematik pp 1401-1427 | Cite as

Wahrscheinlichkeit – die Gesetze des Zufalls

  • Tilo ArensEmail author
  • Frank Hettlich
  • Christian Karpfinger
  • Ulrich Kockelkorn
  • Klaus Lichtenegger
  • Hellmuth Stachel
Chapter

Zusammenfassung

Der Begriff Wahrscheinlichkeit steht für ein Denkmodell, mit dem sich zufällige Ereignisse erfolgreich beschreiben lassen. Das Faszinierende an diesem Modell ist die offensichtliche Paradoxie, dass mathematische Gesetze für regellose Erscheinungen aufgestellt werden. Über die Frage, was Wahrscheinlichkeit eigentlich inhaltlich ist und ob Wahrscheinlichkeit an sich überhaupt existiert, sind die Meinungen gespalten.

Die objektivistische Schule betrachtet Wahrscheinlichkeit als eine quasi-physikalische Größe, die unabhängig vom Betrachter existiert, und die sich bei wiederholbaren Experimenten durch die relative Häufigkeit beliebig genau approximieren lässt.

Der subjektivistischen Schule erscheint diese Betrachtung suspekt, wenn sie nicht gar als Aberglaube verurteilt wird. Für die Subjektivisten oder Bayesianer, wie sie aus historischen Gründen auch heißen, ist Wahrscheinlichkeit nichts anderes als eine Gradzahl, die angibt, wie stark das jeweilige Individuum an das Eintreten eines bestimmten Ereignisses glaubt.

Fassen wir einmal die uns umgebenden mehr oder weniger zufälligen Phänomene der Realität mit dem Begriff „die Welt“ zusammen, so können wir überspitzt sagen: Der Objektivist modelliert die Welt, der Subjektivist modelliert sein Wissen über die Welt.

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Tilo Arens
    • 1
    Email author
  • Frank Hettlich
    • 2
  • Christian Karpfinger
    • 3
  • Ulrich Kockelkorn
    • 4
  • Klaus Lichtenegger
    • 5
  • Hellmuth Stachel
    • 6
  1. 1.Fakultät für MathematikKarlsruher Institut für Technologie (KIT)KarlsruheDeutschland
  2. 2.Fakultät für MathematikKarlsruher Institut für Technologie (KIT)KarlsruheDeutschland
  3. 3.Zentrum Mathematik – M12TU MünchenMünchenDeutschland
  4. 4.TU BerlinBerlinDeutschland
  5. 5.Bioenergy2020+ GmbHGraz/WieselburgÖsterreich
  6. 6.Institut für Diskrete Mathematik und GeometrieTU WienWienÖsterreich

Personalised recommendations