Advertisement

Mathematik pp 1039-1087 | Cite as

Differenzialgleichungssysteme – ein allgemeiner Zugang zu Differenzialgleichungen

  • Tilo ArensEmail author
  • Frank Hettlich
  • Christian Karpfinger
  • Ulrich Kockelkorn
  • Klaus Lichtenegger
  • Hellmuth Stachel
Chapter

Zusammenfassung

Im Kap. 13 haben wir uns ausführlich mit rechnerischen Verfahren beschäftigt, um Lösungen von Differenzialgleichungen zu bestimmen. Dabei haben wir jedoch nur angenommen, dass solche Lösungen tatsächlich existieren, dies jedoch niemals bewiesen. Auch die Frage, ob wir wirklich alle Lösungen einer Differenzialgleichung gefunden haben, musste unbeantwortet bleiben.

Mit dem Satz von Picard-Lindelöf können wir nun die Begründung nachreichen, und wir werden das gleich für Systeme von Differenzialgleichungen tun können. Um diesen Satz und zahlreiche andere Aspekte aus der Theorie der Differenzialgleichungen angehen zu können, werden wir starken Gebrauch von Ergebnissen aus der mehrdimensionalen Analysis, aber auch aus der linearen Algebra machen. In diesem Kapitel kommen diese beiden unterschiedlichen Bereiche der Mathematik erstmals gemeinsam zum Zuge.

Ein wichtiges Phänomen, das im Zusammenhang mit Differenzialgleichungen eine Rolle spielt, ist die Stabilität: Wie wirken sich kleine Veränderungen in den Anfangsbedingungen auf die Lösung aus? Dies ist zum einen von Interesse, um das Verhalten komplizierter nicht-linearer Systeme qualitativ zu verstehen, zum anderen ist es bei numerischen Verfahren essenziell. Bei einem instabilen Verfahren hat die berechnete Näherung nichts mit der tatsächlichen Lösung zu tun.

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Tilo Arens
    • 1
    Email author
  • Frank Hettlich
    • 2
  • Christian Karpfinger
    • 3
  • Ulrich Kockelkorn
    • 4
  • Klaus Lichtenegger
    • 5
  • Hellmuth Stachel
    • 6
  1. 1.Fakultät für MathematikKarlsruher Institut für Technologie (KIT)KarlsruheDeutschland
  2. 2.Fakultät für MathematikKarlsruher Institut für Technologie (KIT)KarlsruheDeutschland
  3. 3.Zentrum Mathematik – M12TU MünchenMünchenDeutschland
  4. 4.TU BerlinBerlinDeutschland
  5. 5.Bioenergy2020+ GmbHGraz/WieselburgÖsterreich
  6. 6.Institut für Diskrete Mathematik und GeometrieTU WienWienÖsterreich

Personalised recommendations