Advertisement

Mathematik pp 573-615 | Cite as

Matrizen und Determinanten – Zahlen in Reihen und Spalten

  • Tilo ArensEmail author
  • Frank Hettlich
  • Christian Karpfinger
  • Ulrich Kockelkorn
  • Klaus Lichtenegger
  • Hellmuth Stachel
Chapter

Zusammenfassung

Bei linearen Gleichungssystemen dienen Matrizen als Hilfsmittel; durch sie wird das Lösen von großen Gleichungssystemen übersichtlich. Die Entscheidung, ob Spaltenvektoren linear unabhängig sind oder eine Basis bilden, wird oft vorteilhaft mittels einer Matrix gefällt. Und im nächsten Kapitel werden wir sehen, dass man mit Matrizen Abbildungen zwischen Vektorräumen darstellen kann.

Die Menge der Matrizen hat, obwohl Matrizen doch scheinbar eher ein Hilfs- oder Darstellungsmittel für abstrakte Sachverhalte in der linearen Algebra sind, eine Struktur. Nicht nur, dass die Menge aller Matrizen als ein Vektorraum aufgefasst werden kann, es lässt sich auch eine Multiplikation von Matrizen erklären, für die vertraute Regeln wie etwa in der Menge \(\mathbb{Z}\) der ganzen Zahlen gelten. Tatsächlich ist die Multiplikation recht speziell gewählt, den tieferen Hintergrund für diese Wahl erfahren wir in dem Kapitel zu den linearen Abbildungen. In dem vorliegenden Kapitel behandeln wir Matrizen ausführlich als selbstständige Objekte der linearen Algebra und betrachten die wichtigsten Typen von Matrizen.

Supplementary material

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Tilo Arens
    • 1
    Email author
  • Frank Hettlich
    • 2
  • Christian Karpfinger
    • 3
  • Ulrich Kockelkorn
    • 4
  • Klaus Lichtenegger
    • 5
  • Hellmuth Stachel
    • 6
  1. 1.Fakultät für MathematikKarlsruher Institut für Technologie (KIT)KarlsruheDeutschland
  2. 2.Fakultät für MathematikKarlsruher Institut für Technologie (KIT)KarlsruheDeutschland
  3. 3.Zentrum Mathematik – M12TU MünchenMünchenDeutschland
  4. 4.TU BerlinBerlinDeutschland
  5. 5.Bioenergy2020+ GmbHGraz/WieselburgÖsterreich
  6. 6.Institut für Diskrete Mathematik und GeometrieTU WienWienÖsterreich

Personalised recommendations