A Gripper System Design method for the Handling of Textile Parts

  • Fabian Ballier
  • Tobias Dmytruk
  • Jürgen Fleischer
Conference paper

Zusammenfassung

This paper presents the first results in the development of a method for designing gripper systems for handling non-rigid flat parts such as textiles. The work focuses on the use of multiple small individual grippers instead of large-scale grippers to reduce the weight on the end-effector. As a result, not every area of the non-rigid part has a direct contact to a gripper and, therefore, the material between the gripper elements deforms. The goal is to find a gripper system design which takes into account these deformations. Therefore, a first approach to the arrangement of the individual grippers on the non-rigid part will be presented. Furthermore, a reconfigurable gripper system is introduced which makes it possible to set up a wide range of gripper configurations.

Schlüsselwörter

Handling system design non-rigid parts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Saadat, M.,Nan, P.: Industrial applications of automatic manipulation of flexible materials. Industrial Robot 29(5): 434–442.  https://doi.org/10.1108/01439910210440255 (2002).
  2. 2.
    Fantoni, G.,Santochi, M.,Dini, G. et al.: Grasping devices and methods in automated production processes. CIRP Annals 63(2): 679–701.  https://doi.org/10.1016/j.cirp.2014.05.006 (2014).
  3. 3.
    Reinhart, G.,Straßer, G.: Flexible gripping technology for the automated handling of limp technical textiles in composites industry. Prod. Eng. Res. Devel. 5(3): 301–306.  https://doi.org/10.1007/s11740-011-0306-1 (2011).
  4. 4.
    Gebauer, I.,Dörsch, C.,Thoben, K.-D. et al.: Automated Assembly of Fibre Preforms for Economical Production of High Performance Composite Parts (2007).Google Scholar
  5. 5.
    Lien, T.K.,Davis, P.G.G.: A novel gripper for limp materials based on lateral Coanda ejectors. CIRP Annals 57(1): 33–36.  https://doi.org/10.1016/j.cirp.2008.03.119 (2008).
  6. 6.
    Frederic Förster: Geregeltes Handhabungssystem zum zuverlässigen und energieeffizienten Handling textiler Kohlenstofffaserzuschnitte. Dissertation, KIT Karlsruher Institut for technology (2016).Google Scholar
  7. 7.
    Paryanto,Brossog, M.,Kohl, J. et al.: Energy Consumption and Dynamic Behavior Analysis of a Six-axis Industrial Robot in an Assembly System. Procedia CIRP 23: 131–136.  https://doi.org/10.1016/j.procir.2014.10.091 (2014).
  8. 8.
    Rassõlkin, A.,Hõimoja, H.,Teemets, R.: Energy Saving Possibilities in the Industrial Robot IRB 1600 Control: 1 - 3 June 2011, Tallinn, Estonia ; conference proceedings. IEEE, Piscataway, NJ (2011).Google Scholar
  9. 9.
    Straßer, G.: Greiftechnologie für die automatisierte Handhabung von technischen Textilien in der Faserverbundfertigung. Zugl.: München, Techn. Univ., Diss., 2011. Forschungsberichte IWB, vol 256. Utz, München (2012).Google Scholar
  10. 10.
    Angerer, A.,Ehinger, C.,Hoffmann, A. et al.: Automated cutting and handling of carbon fiber fabrics in aerospace industries. In: 2010 IEEE International Conference on Automation Science and Engineering, pp 861–866 (2010).Google Scholar
  11. 11.
    Ehinger, C.,Reinhart, G.: Robot-based automation system for the flexible preforming of single-layer cut-outs in composite industry. Prod. Eng. Res. Devel. 8(5): 559–565.  https://doi.org/10.1007/s11740-014-0546-y (2014).
  12. 12.
    Burke, E.,Hellier, R.S.R.,Kendall, G. et al.: Complete and robust no-fit polygon generation for the irregular stock cutting problem. European Journal of Operational Research 179(1): 27–49.  https://doi.org/10.1016/j.ejor.2006.03.011 (2007).
  13. 13.
    Tai, K.,El-Sayed, A.-R.,Shahriari, M. et al.: State of the Art Robotic Grippers and Applications. Robotics 5(2): 11.  https://doi.org/10.3390/robotics5020011 (2016).
  14. 14.
    Gutsche, C.: Beitrag zur automatisierten Montage technischer Textilien. Zugl.: Berlin, Techn. Univ., Diss., 1992. Produktionstechnik - Berlin, vol 115. Hanser, München (1993).Google Scholar
  15. 15.
    Ehinger, C.: Automatisierte Montage von Faserverbund-Vorformlingen. Zugl.: München, Techn. Univ., Diss., 2012. Forschungsberichte IWB, vol 268. Utz, München (2013).Google Scholar
  16. 16.
    Seliger, G.,Szimmat, F.,Niemeier, J. et al.: Automated Handling of Non-Rigid Parts. CIRP Annals 52(1): 21–24.  https://doi.org/10.1016/s0007-8506(07)60521-6 (2003).
  17. 17.
    Stephan, J.: Beitrag zum Greifen von Textilien. Zugl.: Berlin, Techn. Univ., Diss., 2001. Berichte aus dem Produktionstechnischen Zentrum Berlin. IPK, Berlin (2001).Google Scholar
  18. 18.
    Jodin, D.: Untersuchungen zur Handhabung von biegeweichen Flächenzuschnitten aus Leder mit pneumatischen Greifern. Diss., (1992).Google Scholar
  19. 19.
    Böger, T.: Beitrag zur Projektierung von Greifelementen für die Handhabung flächiger, biegeweicher Materialien (1997).Google Scholar
  20. 20.
    Kordi, M.,Husing, M.,Corves, B.: Development of a multifunctional robot endeffector system for automated manufacture of textile preforms. In: 2007 IEEE/ASME international conference on advanced intelligent mechatronics. IEEE, pp 1–6 (2007).Google Scholar
  21. 21.
    Ceglarek, D.,Li, H.,Tang, Y.: Modeling and Optimization of End Effector Layout for Handling Compliant Sheet Metal Parts. J. Manuf. Sci. Eng. 123(3): 473.  https://doi.org/10.1115/1.1366682 (2001).

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Fabian Ballier
    • 1
  • Tobias Dmytruk
    • 1
  • Jürgen Fleischer
    • 1
  1. 1.KIT Karlsruhe Institute of TechnologyKarlsruheDeutschland

Personalised recommendations