Advertisement

Bag Bin-Picking Based on an Adjustable, Sensor-Integrated Suction Gripper

  • Andreas Blank
  • Julian Sessner
  • In Seong Yoo
  • Maximilian Metzner
  • Felix Deichsel
  • Tobias Diercks
  • David Eberlein
  • Dominik Felden
  • Alexander Leser
  • Jörg Franke
Conference paper

Zusammenfassung

Robot-based separation and handling of flexible packaging bags filled with small individual parts is a special challenge in the field of bin-picking. Reasons for this are challenges in the field of orientation and position recognition of bags within the extraction station, the damagefree and reliable handling of these bags as well as a precise bag deposition inside a target region (e.g. final packaging). This paper presents an adjustable, sensor-integrated suction gripper optimized for bag binpicking. The multi-modal sensing hardware used for the gripper is based on weight force measurement and vacuum sensors for the separation. Additional ultrasonic sensors are used to reduce the risk to damage the bag’s content and the gripper. The performed tests proof the feasibility of the approach in terms of robustness and achievable cycle times.

Schlüsselwörter

robot-based bag bin-picking sensor integrated gripper 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Hesse, S: Grundlagen der Handhabungstechnik, Carl Hanser, Munich, 2013Google Scholar
  2. [2]
    Rahardja, K., et al.: Vision-based bin-picking, IEEE IROS, Osaka 1996Google Scholar
  3. [3]
    Kim, T., et al.: A Multiple Kernel Convolution Score Method for Bin Picking of Plastic Packed Object, IEEE IROS 2016, Daejeon, 2016Google Scholar
  4. [4]
    Pretto, A., et al.: Flexible 3D Localization of Planar Objects for Industrial Bin-Picking with Monocamera Vision System, IEEE CASE, Madison, 2013Google Scholar
  5. [5]
    Boehnke, K.: Object localization in range data for robotic bin picking, IEEE CASE, Scottsdale, 2007Google Scholar
  6. [6]
    Besl, P. J., et al.: A method for registration of 3-D shapes, IEEE TPAMI, vol. 14, no. 2, pp. 239-256, 1992Google Scholar
  7. [7]
    Winkelbach S., et al.: Fast Random Sample Matching of 3d Fragments. In: DAGM, Lecture Notes in Computer Science, vol 3175. Springer, BerlinGoogle Scholar
  8. [8]
    Shintake, J., et al.: Versatile Soft Grippers with Intrinsic Electroadhesion on Multifunctional Polymer Actuators. In: Advanced materials, Deerfield, 2016Google Scholar
  9. [9]
    Buschhaus, A.: Hochpraezise adaptive Steuerung und Regelung robotergefuehrter Prozesse, Dissertation, FAU, Erlangen-Nuernberg, 2017Google Scholar
  10. [10]
    Lowe, D. G.: Distinctive Image Features from Scale-Invariant Keypoints. In: International Journal of Computer Vision 60 (2004), Nr.2, S. 91-110Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Andreas Blank
    • 1
  • Julian Sessner
    • 1
  • In Seong Yoo
    • 1
  • Maximilian Metzner
    • 1
  • Felix Deichsel
    • 1
  • Tobias Diercks
    • 1
  • David Eberlein
    • 1
  • Dominik Felden
    • 1
  • Alexander Leser
    • 1
  • Jörg Franke
    • 2
  1. 1.Institute for Factory Automation and Production Systems (FAPS)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)ErlangenDeutschland
  2. 2.Lehrstuhl für Fertigungsautomatisierung und ProduktionssystematikFriedrich-Alexander-Universität ErlangenErlangenDeutschland

Personalised recommendations