Force-controlled Solution for Non-destructive Handling of Sensitive Objects

  • Stefanie Spies
  • Miguel Angel Villanueva Portela
  • Matthias Bartelt
  • Alfred Hypki
  • Benedikt Ebert
  • Ricardo E. Ramirez
  • Bernd Kuhlenkötter
Conference paper

Zusammenfassung

There is a high demand for the automated handling of sensitive objects, e.g. pressure-sensitive pastries, fruit or sensitive cell material. However, easy-touse and flexible solutions for an automated handling of such objects are not available yet. Furthermore, the forces and torques are only considered during the grab or release process. Current methods do not support a complete monitoring of the forces and torques nor the dynamic behavior of the object during the entire handling process. The paper describes an approach for a continuously controlled handling of sensitive objects. It introduces a concept for an overall control of the handling device as well as a concept for the design of a gripping module.

Schlüsselwörter

Automated Handling Supervision Sensitive Objects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Linderstam C, Soderquist BAT (1996) Monitoring the generic assembly operation for impact from gripping to finished insertion. In: IEEE International Conference on Robotics and Automation, pp 3330–3335Google Scholar
  2. 2.
    Shimizu S, Shimojo M, Sato S et al. (1996) The relation between human grip types and force distribution pattern in grasping. In: 5th IEEE International Workshop on Robot and Human Communication. RO-MAN’96 TSUKUBA, pp 286–291Google Scholar
  3. 3.
    Festo AG & Co. KG MultiChoiceGripper. https://www.festo.com/net/SupportPortal/Files/333985/Festo_MultiChoiceGripper_de.pdf. Accessed 25 Jan 2018
  4. 4.
    SCHUNK GmbH & Co. KG (2018) Co-act gripper meets cobots. https://schunk.com/de_en/co-act/. Accessed 25 Jan 2018
  5. 5.
    Bartelt M, Domrös F, Kuhlenkötter B (2012) A Flexible Haptic Test Bed. In: ROBOTIK 2012 (7th German Conference on Robotics). VDE VerlagGoogle Scholar
  6. 6.
    Hoffmeier G, Schletter H, Kuhlenkötter B (2014) Mit modularen Komponenten zu individuellen Greiflösung. MM MaschinenMarkt(22): 74–76Google Scholar
  7. 7.
    Kargov A, Pylatiuk C, Martin J et al. (2004) A comparison of the grip force distribution in natural hands and in prosthetic hands. Disability and Rehabilitation 26(12): 705–711.  https://doi.org/10.1080/09638280410001704278
  8. 8.
    Tracht K, Hogreve S, Milczarek AM et al. (2013) Mehrachsige Kraftsensorik in Greiffingern. wt Werkstattstechnik online 103(9): 712–716Google Scholar
  9. 9.
    Mehdian M, Rahnejat H (1989) A sensory gripper using tactile sensors for object recognition, orientation control, and stable manipulation. IEEE Trans. Syst., Man, Cybern. 19(5): 1250–1261.  https://doi.org/10.1109/21.44044
  10. 10.
    Nakamoto H, Takenawa S (2013) Application of magnetic type tactile sensor to gripper. In: 2013 IEEE Workshop on Robotic Intelligence in Informationally Structured Space (RiiSS). IEEE, Piscataway, NJ, pp 7–12Google Scholar
  11. 11.
    Interlink Electronics (2017) FSR® 400 Series Data Sheet. http://www.interlinkelectronics.com/datasheets/Datasheet_FSR.pdf
  12. 12.
    Vecchi F, Freschi C, Micera S et al. (2000) Experimental Evaluation of Two Commercial Force Sensors for Applications in Biomechanics and Motor Control. In: Proceedings of the 5th Annual Conference of International Functional Electrical Stimulation Society (IFESS)Google Scholar
  13. 13.
    Norton RL (2009) Design of Machinery: An Introduction to the Synthesis and Analysis of Mechanisms and Machines, Fourth. McGraw-Hill EducationGoogle Scholar
  14. 14.
    Siciliano B, Khatib O, Groen F et al. (2010) On-Line Trajectory Generation in Robotic Systems, vol 58. Springer Berlin Heidelberg, Berlin, HeidelbergGoogle Scholar
  15. 15.
    Vannoy J, Xiao J (2008) Real-Time Adaptive Motion Planning (RAMP) of Mobile Manipulators in Dynamic Environments With Unforeseen Changes. IEEE Trans. Robot. 24(5): 1199–1212.  https://doi.org/10.1109/tro.2008.2003277

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Stefanie Spies
    • 1
  • Miguel Angel Villanueva Portela
    • 2
  • Matthias Bartelt
    • 1
  • Alfred Hypki
    • 1
  • Benedikt Ebert
    • 3
  • Ricardo E. Ramirez
    • 2
  • Bernd Kuhlenkötter
    • 1
  1. 1.Chair of Production SystemsRuhr-Universität BochumBochumDeutschland
  2. 2.Department of Mechanical Engineering and MechatronicsNational University of ColombiaBogotáKolumbien
  3. 3.IBG Automation GmbHNeuenradeDeutschland

Personalised recommendations