GroundSim: Animating Human Agents for Validated Workspace Monitoring

  • Kim Wölfel
  • Tobias Werner
  • Dominik Henrich
Conference paper


In the promising field of human-robot cooperation, robot manipulators must account for humans in the shared workspace. To this end, current prototypes integrate various algorithms (e.g. path planning or computer vision) into complex solutions for workspace monitoring. The step from research to industrial use for these solutions demands rigid validation of the underlying software with real-world and synthetic data. Related fields (e.g. human factors and ergonomics) implement toolsets to create synthetic data of human-machine interactions. However, existing toolsets employ hand-crafted motion paths or motion segments for their human agents. This limits the variety of resulting motions and implies laborious composition of animation sequences. In contrast to this, we contribute a novel approach to human animation for synthetic validation: We animate our human agents through a realistic physics simulation and we expose motion paths in a flexible and intuitive high-level editing interface. We also generate photo-realistic images of resulting animations through state-of-the-art rendering techniques. Finally, we employ these synthetic images and their ground-truth backing to validate a prototype for a workspace monitoring system and a subsequent online path planner.


workspace monitoring virtual environments ground-truth testing synthetic data physically-based animation of humans computer vision robotics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Bullet Physics Library.
  3. 3.
    S. Carpin. USARSim: a robot simulator for research and education. ICRA, 2007.Google Scholar
  4. 4.
    S. Coros, P. Beaudoin, M. Van de Panne. Generalized biped walking control. ACM Transactions on Graphics 29.4, 2010.Google Scholar
  5. 5.
    R. Diankov, J. Kuffner. Openrave: A planning architecture for autonomous robotics. Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-08-34 79, 2008.Google Scholar
  6. 6.
    W. Donnelly, A. Lauritzen. Variance shadow maps. Interactive 3D graphics and games. ACM, 2006.Google Scholar
  7. 7.
    M. Freese et al. Virtual robot experimentation platform v-rep: A versatile 3d robot simulator. Simulation, modeling, and programming for autonomous robots, 2010.Google Scholar
  8. 8.
    S. Hargreaves, M. Harris. Deferred shading. Game Developers. Vol. 2. 2004.Google Scholar
  9. 9.
    P.E. Hart, N.J. Nilsson, B. Raphael. A Formal Basis for the Heuristic Determination of Minimum Cost Paths. Systems Science and Cybernetics SSC4, pp. 100-107, 1968.Google Scholar
  10. 10.
    N. Koenig, A. Howard. Design and use paradigms for gazebo, an open-source multirobot simulator. IROS, 2004.Google Scholar
  11. 11.
    S. Lemaignan et al. Human-robot interaction in the MORSE simulator. HRI, 2012.Google Scholar
  12. 12.
    T. Möller, E. Haines, N. Hoffman. Real-Time Rendering, Third Edition. ISBN 9781568814247, AK Peters/CRC Press, 2008.Google Scholar
  13. 13.
    Newton Dynamics.
  14. 14.
    Open Dynamics Engine (ODE).
  15. 15.
    Open Source 3D Graphics Engine (OGRE).
  16. 16.
    M. Olivier. Cyberbotics Ltd. Webots: professional mobile robot simulation. Advanced Robotic Systems 1.1, 2004.Google Scholar
  17. 17.
    M. Piccardi. Background subtraction techniques: a review. Systems, Man and Cybernetics, Vol. 4, 2004.Google Scholar
  18. 18.
    RoboDK. Sim. for industrial robots and offline programming.
  19. 19.
    J. Thieling, J. Rossmann. Virtual Testbeds for the Development of Sensor-Enabled Applications. Montage Handhabung Industrieroboter. Springer Vieweg, Berlin, Heidelberg, pp. 23-32, 2017.Google Scholar
  20. 20.
  21. 21.
    T. Werner. Integration of an Interactive Raytracing-Based Visualization Component into an Existing Simulation Kernel. Master Thesis. University Bayreuth. 2011.Google Scholar
  22. 22.
    T. Werner, D. Henrich. Efficient and precise multi-camera reconstruction. Distributed Smart Cameras. ACM, 2014.Google Scholar
  23. 23.
    T. Werner, D. Henrich, D. Riedelbauch. Design and Evaluation of a Multi-Agent Software Architecture for Risk-Minimized Path Planning in Human-Robot Workcells. Montage Handhabung Industrieroboter. Best Paper Award.Google Scholar
  24. 24.
    J.Wu, Z. Popovic. Terrain-adaptive bipedal locomotion control. ACM Transactions on Graphics (TOG) 29.4, 2010.Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Chair for Robotics and Embedded SystemsUniversität BayreuthBayreuthDeutschland

Personalised recommendations