Finite Element Analysis as a Key Functionality for eRobotics to Predict the Interdependencies between Robot Control and Structural Deformation

Conference paper

Zusammenfassung

The design and usage of a robot requests knowledge from many different disciplines, like mechatronics, materials science, data management etc. Nowadays, computational simulations are an acknowledged method to assure an effective development process of a robotic system. Nevertheless, those simulations are limited to the analysis of single components. This leads to a negligence of the overall picture, which can be fatal, as the failure of a system is often caused by a defective interplay of different components. The concept of eRobotics proposes a framework for an Overall System Simulation, where all occurring interdependencies are explicitly considered. Still missing is an interaction with Finite Element Analysis, which calculates the structural deformation of a component with respect to the actual load case. This work closes the gap and gives a newkey functionality to eRobotics, which allows analyzing the impact of structural deformation on robot control and vice versa.

Schlüsselwörter

Finite Element Analysis (FEA) eRobotics Rigid Body Dynamics (RBD) Overall System Simulation 3D Simulation Virtual Testbed 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Rossmann, J., Schluse, M., Rast, M., Atorf, L.: eRobotics combining electronic media and simulation technology to develop (not only) robotics applications. In: E-Systems for the 21stCentury – Concept, Development, and Applications (Kadry, S. and El Hami, A., eds.), vol. 2, ch. 10, Apple Academic Press (2016). ISBN: 978-1-77188-255-2.Google Scholar
  2. 2.
    Montavon, R., Zirn, O.: Couplage des modèles d’analyses par élément finis et corps-rigides en machines-outils. (via ResearchGate), (2008).Google Scholar
  3. 3.
    Chung, G-J., Kim, D-H.: Structural Analysis of 600Kgf Heavy Duty Handling Robot. In: 2010 IEEE Conference on Robotics, Automation and Mechatronics, pp. 40-44 (2010).Google Scholar
  4. 4.
    Kono, D., Lorenzer, T., Weiker, S., Wegener, K.: Comparison of Rigid Body Mechanics and Finite Element Method for Machine Tool Evaluation. Eidgenössische Technische Hochschule Zürich, Institut für Werkzeugmaschinen und Fertigung (2010).Google Scholar
  5. 5.
    Wang, X., Mills, J.K.: A FEM Model for Active Vibration Control of Flexible Linkages. In: Proceedings IEEE Int. Conf. on Robotics & Automation, pp. 4308-13. New Orleans (2004).Google Scholar
  6. 6.
    Busch, M.: Zur Effizienten Kopplung von Simulationsprogrammen. Dissertation in mechanical engineering at the University Kassel, kassel university press GmbH, Kassel (2012).Google Scholar
  7. 7.
    Schmoll, R: Co-Simulation und Solverkopplung – Analyse komplexer multiphysikalischer Systeme. Dissertation in mechanical engineering at the University Kassel, kassel university press GmbH, Kassel (2015).Google Scholar
  8. 8.
    Stettinger, G., Benedikt, M., Thek, N., Zehetner, J.: On the difficulties of real-time co-simulation. In: V Int. Conference on Computational Methods for Coupled Problems in Science and Engineering, (S. Idelsohn, M. Papadrakakis, B.Schrefler, eds.), pp. 989-999 (2013).Google Scholar
  9. 9.
    Ambrosio, J., Rauter, F., Pombo, J., Pereira, M.: Co-simulation procedure for the finite element and flexible multibody dynamic analysis. In: Proceedings of the 11th Pan-American Congress of Applied Mechanics (2009).Google Scholar
  10. 10.
    Dietz, S., Hippmann, G., Schupp, G.: Interaction of Vehicles and Flexible Tracks by Co-Simulation of Multibody Vehicle Systems and Finite Element Track Models. In: The Dynamicsof Vehicles on Roads and Tracks, 37, pp. 372-384, 17th IAVSD, Denmark (2001).Google Scholar
  11. 11.
    Bathe, K-J.: Finite Element Procedures. Prentice-Hall, Inc., Upper Saddle River, US (1996).Google Scholar
  12. 12.
    Rieg, F., Steinhilper, R. (edts): Handbuch Konstruktion. Carl Hanser Verlag München, Wien, pp. 849-857, (2012). ISBN: 978-3-446-43000-6.Google Scholar
  13. 13.
    Roßmann, J., Schluse, M., Schlette, C., Waspe, R.: A New Approach to 3D Simulation Technology as Enabling Technology for eRobotics. In: Van Impe, Jan F.M and Logist, Filip (Eds.): 1st International Simulation Tools Conference & Expo, SIMEX (2013).Google Scholar
  14. 14.
    Stewart, D., Trinkle, J.C.: An Implicit Time-Stepping Scheme for Rigid Body Dynamics with Coulomb Friction. In: ICRA (2000).Google Scholar
  15. 15.
    Jung, T. J.: Methoden der Mehrkörperdynamiksimulation als Grundlage realitätsnaher Virtueller Welten. Dissertation at RWTH Aachen University, Departement for Electrical Engineering and Information Technology (2011).Google Scholar
  16. 16.
    Kaufmann, D., Rast, M., Roßmann, J.: Implementing a New Approach for Bidirectional Interaction between a Real-Time Capable Overall System Simulation and Structural Simulations. In: Proceedings of the 7th Int. Conference on Simulation and Modeling Methodologies, Technologies & Applications, pp. 114-125, Madrid, ES (2017). ISBN: 978-989-758-265-3Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Man-Machine InteractionRWTH Aachen UniversityAachenGermany

Personalised recommendations