Advertisement

Sensor-Based Robot Programming for Automated Manufacturing of High Orthogonal Volume Structures

  • André Harmel
  • Alexander Zych
Conference paper

Zusammenfassung

This paper introduces an innovative method for the programming of welding robots in the area of steel volume structure production. The objectives of this programming method are reducing the effort of creating robot programs as well as increasing productivity in production. Starting point of the programming method is a three-dimensional digitalization of the current workpiece. Based on the 3D sensor data of the workpiece the individual components of the construction are identified automatically as well as the weld seams required for connecting them. In this process, 3D sensor data of the components are transformed into simplified regular geometric shapes that will be used later on for collision testing. Collision testing is part of a postprocessor with specially developed path planning algorithms to determine the robot movements required for welding the identified seams. Finally, the robot movements are converted into a system-specific robot program. The developed programming method has been integrated into an existing production facility at Warnow shipyard in Rostock-Warnemünde and was tested under real production conditions.

Schlüsselwörter

shipbuilding welding robot sensor-based programming collision free path planning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Boekholt, R.: Welding mechanization and automation in shipbuilding worldwide. Abington Publishing, Cambridge (1996)Google Scholar
  2. 2.
    Collberg, M., Schmidt, B., Steinberger, J.: Lösung für die Offline-Programmierung von Schweißrobotern im Schiffbau. In: DVS-Berichte Band 176, DVS-Verlag, Düsseldorf (1996)Google Scholar
  3. 3.
    Holamo, O. P., Ruottu, K.: Machine Vision System-Aided Robot Welding of Micropanels. In: DVS-Berichte Band 237, pp. 516-519. DVS-Verlag, Düsseldorf (2005)Google Scholar
  4. 4.
    Ang Jr, M. H., Lin, W., Lim, S.-Y.: A walk-through programmed robot for welding in shipyards. Industrial Robot: An International Journal 26(5), 377-388 (1999)Google Scholar
  5. 5.
    Zych, A.: Automatische Programmierung von Schweißrobotern in der schiffbaulichen Mikropaneelfertigung auf Grundlage von 3D-Sensordaten. Universität Rostock, Rostock (2010)Google Scholar
  6. 6.
    Gilliland, M. T.: Method and apparatus for determining the configuration of a workpiece. United States Patent 5,999,642 (1999)Google Scholar
  7. 7.
    Veikkolainen, M., Säikkö, J.: Welding arrangement and method. European Patent 1 188 510 A2 (2002)Google Scholar
  8. 8.
    Wanner, M., Zych, A., Pfletscher, U.: Method and device for controlling robots for welding workpieces. International Patent WO 2008/101737 A1 (2008)Google Scholar
  9. 9.
    Wanner, M., Zych, A., Pfletscher, U.: Automatic Robot Programming System for Welding Robots in Micro-panel Production. In: Schiffbauforschung 47(1), pp. 39-48 (2008)Google Scholar
  10. 10.
    Ahn, S. J.: Least Squares Orthogonal Distance Fitting of Curves and Surfaces in Space. Springer Verlag, Berlin Heidelberg (2004)Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Fraunhofer Research Institution for Large Structures in Production Engineering IGPRostockDeutschland

Personalised recommendations