Skip to main content

Visible Light Communication Post-equalization Technology

  • Chapter
  • First Online:
LED-Based Visible Light Communications

Part of the book series: Signals and Communication Technology ((SCT))

  • 1627 Accesses

Abstract

Equalization can be divided into two categories: frequency domain equalization and time domain equalization. The so-called frequency domain equalization corrects the system’s frequency characteristics, so that the total characteristics, including the baseband system equalizer, satisfy the undistorted transmission conditions. The so-called time domain equalization directly corrects distorted waveforms to satisfy the requirements of no inter-symbol interference criterion in the time domain, with parameters generated by the equalizer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, M., Wang, Y., Wang, Z., et al.: A novel scalar MCMMA blind equalization utilized in 8-PAM LED based visible light communication system. In: IEEE International Conference on Communications Workshops. IEEE, pp. 321–325 (2016)

    Google Scholar 

  2. Wang, Y., Huang, X., Tao, L., et al.: 4.5-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization. Opt. Express 23(10), 13626–13633 (2015)

    Google Scholar 

  3. Bandara, K., Niroopan, P., Chung, Y.: Improved indoor visible light communication with PAM and RLS decision feedback equalizer. Inst. Electron. Telecommun. 59(6), 672–678 (2013)

    Google Scholar 

  4. Bandara, K., Chung, Y.: Reduced training sequence using RLS adaptive algorithm with decision feedback equalizer in indoor visible light wireless communication channel. In: IEEE International Conference on ICT Convergence (ICTC, 2012), pp. 149–154

    Google Scholar 

  5. Wang, Y., Shi, J., Yang, C., Wang, Y., Chi, N.: Integrated 10Gb/s multi-level multi-band PON and 500 Mb/s indoor VLC system based on N-SC-FDE modulation. Opt. Lett. 39(9), 2576–2579 (2014)

    Google Scholar 

  6. Wang, Y., Huang, X., Zhang, J., Wang, Y., Chi, N.: Enhanced performance of visible light communication employing 512-QAM N-SC-FDE and DD-LMS. Opt. Exp. 22(13), 15328–15334 (2014)

    Google Scholar 

  7. Wang, Yiguang, et al.: Enhanced performance of a high-speed WDM CAP64 VLC system employing Volterra series-based nonlinear equalizer. IEEE Photonics J. 7(3), 1–7 (2015)

    Google Scholar 

  8. Zhou, Y., et al.: A novel memoryless power series based adaptive nonlinear pre-distortion scheme in high speed visible light communication. In: Optical Fiber Communications Conference and Exhibition IEEE, W2A.40 (2017)

    Google Scholar 

  9. Kaminow, I., Li, T.: Optical fiber telecommunications IVA. Elsevier Science (2002)

    Google Scholar 

  10. Oerder, M., Meyr, H.: Digital filter and square timing recovery. IEEE Trans. Commun. 36(5), 605–612 (1988)

    Article  Google Scholar 

  11. Gardner, F.: A BPSK/QPSK timing-error detector for sampled receivers. IEEE Trans. Commun. 34(5), 423–429 (1986)

    Article  Google Scholar 

  12. Godard, D.: Passband timing recovery in an all-digital modem receiver. IEEE Trans. Commun. 26(5), 517–429 (1978)

    Google Scholar 

  13. Mueller, K., Muller, M.: Timing recovery in digital synchronous data receivers. IEEE Trans. Commun. 24(5), 516–531S (1976)

    Article  Google Scholar 

  14. Viterbi, A.: Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission. IEEE Trans. Inf. Theor. 29(4), 543–551 (1983)

    Article  MathSciNet  Google Scholar 

  15. Peveling, R., Pfau, T., Aamczyk, O., Eickhoff, R., Noe, R.: Multiplier-free real-time phase tracking for coherent QPSK receivers. IEEE Photonics Technol. Lett. 21(3), 137–139 (2009)

    Article  Google Scholar 

  16. Pfau, T., Hoffmann, S., Noe, R.: Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for -QAM constellations. J. Lightwave Technol. 27(8), 989–999 (2009)

    Article  Google Scholar 

  17. Zhou, X.: An improved feed-forward carrier recovery algorithm for coherent receivers with M-QAM modulation format. IEEE Photon. Technol. Lett. 22(14), 1051–1053 (2010)

    Article  Google Scholar 

  18. Gao, Y., Lau, A., Lu, C., Wu, J., Li, Y., Xu, K.: Low-complexity two-stage carrier phase estimation for 16-QAM systems using QPSK partitioning and maximum likelihood detection. In: Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2011 and the National Fiber Optic Engineers Conference, pp. 1–3 (2011)

    Google Scholar 

  19. Bülow, H., et al.: Measurement of the maximum speed of PMD fluctuation in installed field fiber. In: Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication. OFC/IOOC’99. Technical Digest, vol. 2, pp. 83–85 (1999)

    Google Scholar 

  20. Louchet, H., Kuzmin, K., Richter, A.: Improved DSP algorithms for coherent 16-QAM transmission. In: 34th European Conference on Optical Communication, 2008. ECOC 2008, pp. 1–2 (2008)

    Google Scholar 

  21. Zhou, X., Yu, J., Magill, P.: Cascaded two-modulus algorithm for blind polarization demultiplexing of 114-Gb/s PDM-8-QAM optical signals. In: Optical Fiber Communication Conference. Optical Society of America (2009)

    Google Scholar 

  22. Spalvieri, A., Valtolina, R.: Data-aided and phase-independent adaptive equalization for data transmission systems. European Patent Application EP 1.089: 457

    Google Scholar 

  23. Wang, Y., Huang, X., Zhang, J., Wang, Y., Chi, N.: Enhanced performance of visible light communication employing 512-QAM N-SC-FDE and DD-LMS. Opt. Express 22(13), 15328–15334 (2014)

    Google Scholar 

  24. Wang, Y., Shi, J., Yang, C., Wang, Y., Chi, N.: Integrated 10Gb/s multi-level multi-band PON and 500Mb/s indoor VLC system based on N-SC-FDE modulation. Opt. Express 39(9), 2576–2579 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Chi .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Tsinghua University Press, Beijing and Springer-Verlag GmbH Germany

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chi, N. (2018). Visible Light Communication Post-equalization Technology. In: LED-Based Visible Light Communications. Signals and Communication Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56660-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-56660-2_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-56658-9

  • Online ISBN: 978-3-662-56660-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics