Tight-Binding Methods

Chapter

Abstract

Despite recent major developments in algorithms and computer hardware, the simulation of large systems of particles by ab initio methods is still limited to about a hundred particles. For treating larger systems by molecular dynamics, one can use either tight-binding (TB) or classical molecular- dynamics methods. The TB method has the advantage of being quantum mechanical; therefore one has, in addition to its higher accuracy, information about the electronic structure of the system. In the field of quantum chemistry, other semi-empirical methods, such as MNDO (modified neglect of differential overlap), also exist. These are, in their nature, very similar to Hartree–Fock methods, but the computations of the Hamiltonian and overlap matrix elements are based on semi-empirical formulae.

References

  1. 1.
    J.C. Slater, G.F. Koster, Phys. Rev. 94, 1498 (1954)CrossRefGoogle Scholar
  2. 2.
    C. Xu, C.Z. Wang, C.T. Chan, K.M. Ho, J. Phys. Condens. Matter 4, 6047 (1992)CrossRefGoogle Scholar
  3. 3.
    M. Mehl, D. Papaconstantopoulos, Phys. Rev. B 54, 4519 (1996)CrossRefGoogle Scholar
  4. 4.
    F. Liu, Phys. Rev. B 52, 10677 (1995)CrossRefGoogle Scholar
  5. 5.
    D. Porezag, Th Frauenheim, Th Köhler, G. Seifert, R. Kaschner, Phys. Rev. B 51, 12947 (1995)CrossRefGoogle Scholar
  6. 6.
    A. Taneda, K. Esfarjani, Z.Q. Li, Y. Kawazoe, Comput. Mat. Sci. 9, 343 (1998)Google Scholar
  7. 7.
    W.A. Harrison, Electronic Structure and the Properties of Solids (Dover, New York, 1980)Google Scholar
  8. 8.
    M. Menon, K.R. Subbaswamy, Phys. Rev. Lett. 67, 3487 (1991); Int. J. Mod. Phys. 6, 3839 (1992)CrossRefGoogle Scholar
  9. 9.
    A.P. Sutton, M.W. Finnis, D.G. Pettifor, Y. Ohta, J. Phys. C. 21, 35 (1988)CrossRefGoogle Scholar
  10. 10.
    P.W. Anderson, Phys. Rev. Lett. 21, 13 (1968); Phys. Rev. 181, 25 (1969)CrossRefGoogle Scholar
  11. 11.
    A.P. Horsefield, Phys. Rev. B 56, 6594 (1997). References thereinCrossRefGoogle Scholar
  12. 12.
    V. Heine, Solid State Phys. 35, 47 (1980); D.W. Bullet, Solid State Phys. 35, 173 (1980)Google Scholar
  13. 13.
    M. Foulkes, R. Haydock, Phys. Rev. B 39, 12520 (1989)CrossRefGoogle Scholar
  14. 14.
    I. Kwon, R. Biswas, C.Z. Wang, K.M. Ho, C.M. Soukoulis, Phys. Rev. B 49, 7242 (1994)CrossRefGoogle Scholar
  15. 15.
    L. Goodwin, A.J. Skinner, D.G. Pettifor, Europhys. Lett. 9, 701 (1989)CrossRefGoogle Scholar
  16. 16.
    M.S. Tang, C.Z. Wang, C.T. Chan, K.M. Ho, Phys. Rev. B 53, 979 (1996)CrossRefGoogle Scholar
  17. 17.
    M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992)CrossRefGoogle Scholar
  18. 18.
    X.P. Li, R.W. Nunes, D. Vanderbilt, Phys. Rev. B 47, 10891 (1993)CrossRefGoogle Scholar
  19. 19.
    M.S. Daw, Phys. Rev. B 47, 10895 (1993)CrossRefGoogle Scholar
  20. 20.
    P. Ordejon, D.A. Drabold, R.M. Martin, M.P. Grumbach, Phys. Rev. B 51, 1456 (1995)CrossRefGoogle Scholar
  21. 21.
    W. Kohn, Phys. Rev. Lett. 76, 3168 (1996)CrossRefGoogle Scholar
  22. 22.
    R.W. Nunes, D. Vanderbilt, Phys. Rev. B 50, 17611 (1994)CrossRefGoogle Scholar
  23. 23.
    W. Hierse, E.B. Stechel, Phys. Rev. B 50, 17811 (1994)CrossRefGoogle Scholar
  24. 24.
    J.M. Millam, G.E. Scuseria, J. Chem. Phys. 106, 5569 (1997)CrossRefGoogle Scholar
  25. 25.
    S. Goedecker, L. Colombo, Phys. Rev. Lett. 73, 122 (1994); S. Goedecker, M. Teter, Phys. Rev. B 51, 9455 (1995)CrossRefGoogle Scholar
  26. 26.
    R. Baer, M. Head-Gordon, J. Chem. Phys. 107, 10003 (1997)CrossRefGoogle Scholar
  27. 27.
    R. Baer, M. Head-Gordon, Phys. Rev. B 58, 15296 (1998)CrossRefGoogle Scholar
  28. 28.
    R. Haydock, V. Heine, M.J. Kelly, J. Phys. Chem. 5, 2845 (1972); R. Haydock, Solid State Phys. 35, 215 (1980)Google Scholar
  29. 29.
    D.R. Bowler, M. Aoki, C.M. Goringe, A.P. Horsefield, D.G. Pettifor, Model. Sim. Matls. Sci. Eng. 5, 199 (1997)CrossRefGoogle Scholar
  30. 30.
    D. Tomańek, M. Schlüter, Phys. Rev. B 54, 4519 (1986); Phys. Rev. Lett. 65, 1306 (1991)Google Scholar
  31. 31.
    M. Teter, Phys. Rev. B 48, 5031 (1993). References thereinCrossRefGoogle Scholar
  32. 32.
    K. Ohno, Theor. Chim. Acta 2, 219 (1964); G. Klopman, J. Am. Chem. Soc. 86, 4450 (1964)Google Scholar
  33. 33.
    P. Fulde, Electron Correlations in Molecules and Solids, vol. 100. Solid-State Series (Springer, Berlin, 1993), p. 151CrossRefGoogle Scholar
  34. 34.
    C.G. Broyden, Math. Comput. 19, 577 (1965); D. Vanderbilt, S.G. Louie, Phys. Rev. B 30, 6118 (1984)Google Scholar
  35. 35.
    K. Esfarjani, Y. Kawazoe, J. Phys. Condens. Matter 10, 8257 (1998)CrossRefGoogle Scholar
  36. 36.
    J. Guevara, F. Parisi, A.M. Llois, M. Weissmann, Phys. Rev. B 55, 13283 (1997)CrossRefGoogle Scholar
  37. 37.
    P. Villase\(\tilde{\rm n}\)or-Gonzales, J. Dorantes-Dávila, H. Dreyssé, G.M. Pastor, Phys. Rev. B 55, 15084 (1997)CrossRefGoogle Scholar
  38. 38.
    J. Dorantes-Dávila, H. Dreyssé, G.M. Pastor, Phys. Rev. B 55, 15033 (1997)CrossRefGoogle Scholar
  39. 39.
    Y. Hashi, K. Esfarjani, S. Itoh, S. Ihara, Y. Kawazoe, Trans. Mat. Res. Soc. Jpn. 20, 486 (1996)Google Scholar
  40. 40.
    K. Esfarjani, Y. Hashi, S. Itoh, S. Ihara, Y. Kawazoe, Z. Phys. D 41, 73 (1997)Google Scholar
  41. 41.
    S. Saito, S. Okada, S. Sawada, N. Hamada, Phys. Rev. Lett. 75, 685 (1995)CrossRefGoogle Scholar
  42. 42.
    J. Onoe, K. Takeuchi, Phys. Rev. B 54, 6167 (1996)CrossRefGoogle Scholar
  43. 43.
    K. Esfarjani, Y. Hashi, J. Onoe, K. Takeuchi, Y. Kawazoe, Phys. Rev. B 57, 223 (1998)CrossRefGoogle Scholar
  44. 44.
    A.P. Smith, G.F. Bertsch, Phys. Rev. B 53, 7002 (1996)CrossRefGoogle Scholar
  45. 45.
    P. Giannozzi, W. Andreoni, Phys. Rev. Lett. 76, 4915 (1996)CrossRefGoogle Scholar
  46. 46.
    G.F. Bertsch, A.P. Smith, K. Yabana, Phys. Rev. B 52, 7876 (1995)CrossRefGoogle Scholar
  47. 47.
    D. Bakowies, W. Thiel, Chem. Phys. 151, 309 (1991), R.E. Stratton, M. Newton, J. Phys. Chem. 92, 2141 (1988)Google Scholar
  48. 48.
    P. Giannozzi, S. Baroni, J. Chem. Phys. 100, 8537 (1994)CrossRefGoogle Scholar
  49. 49.
    D. Tomańek, M. Schlüter, Phys. Rev. Lett. 56, 1055 (1986); Phys. Rev. B 36, 1208 (1987)Google Scholar
  50. 50.
    R. Biswas, D.R. Hamann, Phys. Rev. Lett. 55, 2001 (1985); Phys. Rev. B 36, 6434 (1987)Google Scholar
  51. 51.
    K. Raghavachari, V. Logovinsky, Phys. Rev. Lett. 55, 2853 (1985); K. Raghavachari, J. Chem. Phys. 83, 3520 (1985); J. Chem. Phys. 84, 5672 (1986); K. Raghavachari, C.M. Rohlfing, Chem. Phys. Lett. 143, 428 (1988); J. Chem. Phys. 89, 2219 (1988)CrossRefGoogle Scholar
  52. 52.
    M.R. Pederson, A.A. Quong, Phys. Rev. Lett. 74, 2319 (1995)CrossRefGoogle Scholar
  53. 53.
    J.L. Elkind, J.M Alford, F.D. Weiss, R.T. Laaksonen, R.E. Smalley, J. Chem. Phys 87, 2397 (1987); S. Maruyama, L.R. Anderson, R.E. Smalley, J. Chem. Phys 93, 5349 (1990); J.M. Alford, R.T. Laaksonen, R.E. Smalley, J. Chem. Phys. 94, 2618 (1991)Google Scholar
  54. 54.
    M.F. Jarrold, J.E. Brower, K.M. Creegan, J. Chem. Phys 90, 3615 (1989); M.F. Jarrold, U. Ray, K.M. Creegan, J. Chem. Phys. 93, 224 (1990); U. Ray, M.F. Jarrold, J. Chem. Phys 94, 2631 (1991)Google Scholar
  55. 55.
    B. Andersen, J.M. Gordon, Phys. Rev. E 50, 4346 (1994)CrossRefGoogle Scholar
  56. 56.
    K. Esfarjani, Y. Hashi, Y. Kawazoe, Nuclus 97 Conference Proceedings, Tsukuba, Japan (1998), p. 403Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Kaoru Ohno
    • 1
  • Keivan Esfarjani
    • 2
  • Yoshiyuki Kawazoe
    • 3
  1. 1.Department of PhysicsYokohama National UniversityYokohamaJapan
  2. 2.Department of Mechanical and Aerospace Engineering, Materials Science and Engineering and PhysicsUniversity of VirginiaCharlottesvilleUSA
  3. 3.New Industry Creation Hatchery CenterTohoku UniversitySendaiJapan

Personalised recommendations