Advertisement

Impact of Gradual Vascular Deformations on the Intra-aneurysmal Hemodynamics

  • Samuel Voß
  • Patrick Saalfeld
  • Sylvia Saalfeld
  • Oliver Beuing
  • Gabor Janiga
  • Bernhard Preim
Conference paper
Part of the Informatik aktuell book series (INFORMAT)

Zusammenfassung

The treatment of intracranial aneurysms based on stentassisted coiling often leads to local vascular deformations. Patient-specific data of an aneurysm in the pre interventional and follow-up state is used to interpolate intermediate vessel-aneurysm configurations. Computational Fluid Dynamics simulations are performed in order to quantify the effect of vessel deformation on the blood flow. Results reveal gradual changes in the blood flow patterns shifting the load on the aneurysm wall from the dome to the neck region. Based on this novel concept, it is possible to virtually evaluate how different types of stents can improve or impair the treatment goal of reducing the intra-aneurysmal blood flow.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Gao B, Baharoglu MI, Cohen AD, et al. Stent-assisted coiling of intracranial bifurcation aneurysms leads to immediate and delayed intracranial vascular angle remodeling. Am J Neuroradiol. 2012;33(4):649–654.Google Scholar
  2. 2.
    Chau Y, Mondot L, Sachet M, et al. Modification of cerebral vascular anatomy induced by Leo stent placement depending on the site of stenting: a series of 102 cases. Interv Neuroradiol. 2016;22(6):666–673.Google Scholar
  3. 3.
    Gao B, Baharoglu MI, Malek AM. Angular remodeling in single stent-assisted coiling displaces and attenuates the flow impingement zone at the neck of intracranial bifurcation aneurysms. Neurosurgery. 2013;72(5):739–748.Google Scholar
  4. 4.
    Gao B, Baharoglu MI, Cohen AD, et al. Y-stent coiling of basilar bifurcation aneurysms induces a dynamic angular vascular remodeling with alteration of the apical wall shear stress pattern. Neurosurgery. 2013;72(4):617–629.Google Scholar
  5. 5.
    Jeong W, Han MH, Rhee K. The hemodynamic alterations induced by the vascular angular deformation in stent-assisted coiling of bifurcation aneurysms. Comput Biol Med. 2014;53:1–8.Google Scholar
  6. 6.
    Voß S, Berg P, Janiga G, et al. Variability of intra-aneurysmal hemodynamics caused by stent-induced vessel deformation. Curr Dir Biomed Eng. 2017;3(2):305–308.Google Scholar
  7. 7.
    Saalfeld P, Glaßer S, Beuing O, et al. The FAUST framework: free-form annotations on unfolding vascular structures for treatment planning. Comput Graph. 2017;65:12–21.Google Scholar
  8. 8.
    Berg P, Stucht D, Janiga G, et al. Cerebral blood flow in a healthy circle of willis and two intracranial aneurysms: computational fluid dynamics versus four-dimensional phase-contrast magnetic resonance imaging. J Biomech Eng. 2014;136(4):041003/1–9.Google Scholar
  9. 9.
    Lauric A, Baharoglu MI, Malek AM. Ruptured status discrimination performance of aspect ratio, height/width, and bottleneck factor is highly dependent on aneurysm sizing methodology. Neurosurgery. 2012;71(1):38–46.Google Scholar
  10. 10.
    Neugebauer M, Diehl V, Skalej M, et al. Geometric reconstruction of the ostium of cerebral aneurysms. Proc VMV. 2010; p. 307–314.Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2018

Authors and Affiliations

  • Samuel Voß
    • 1
    • 2
  • Patrick Saalfeld
    • 3
  • Sylvia Saalfeld
    • 1
    • 3
  • Oliver Beuing
    • 1
    • 4
  • Gabor Janiga
    • 1
    • 2
  • Bernhard Preim
    • 1
    • 3
  1. 1.STIMULATE Research CampusUniversity of MagdeburgMagdeburgDeutschland
  2. 2.Department of Fluid Dynamics and Technical FlowsUniversity of MagdeburgMagdeburgDeutschland
  3. 3.Department of Simulation and GraphicsUniversity of MagdeburgMagdeburgDeutschland
  4. 4.Institute of NeuroradiologyUniversity Hospital MagdeburgMagdeburgDeutschland

Personalised recommendations