Advertisement

Stitching Pathological Tissue Images using DOP Feature Tracking

  • Matthias Bergler
  • Maximilian Weiherer
  • Tobias Bergen
  • Malte Avenhaus
  • David Rauber
  • Thomas Wittenberg
  • Christian Münzenmayer
  • Michaela Benz
Conference paper
Part of the Informatik aktuell book series (INFORMAT)

Zusammenfassung

This contribution introduces an approach for stitching multiple images of a histological slide to a panorama image using Differences of Paraboloids (DOP). DOP provides a novel method for the detection, description and matching of features of two overlapping images. In our context of manual whole-slide imaging (WSI), DOP extracts essential keypoints of an image and describes them with feature vectors considering the keypoint’s neighborhood. The DOP feature vector of the current image is then matched against the feature vectors of all previous images. With matching correspondences, a feature based image registration is generated that estimates the translation between two overlapping images. Likewise, all images are aligned to form a whole-slide panorama. Our results reveal a superior stitching quality employing the presented DOP approach in comparison to the well-known SIFT and SURF. Our evaluation is based on the homogeneity at the artifically created edges in the panorama due to the stitching. The DOP offers a convincing solution to stitch pathological tissue.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Bergen T. Real-time Endoscopic Image Stitching for Cystoscopy; 2017. PhD-thesis, University Koblenz-Landau, in press.Google Scholar
  2. 2.
    Lowe DG. Distinctive image features from scale-invariant keypoints. Int J Comput Vis. 2004;60(2):91–110.Google Scholar
  3. 3.
    Bay H, Tuytelaars T, Van Gool L. SURF: Speeded up robust features. Proc ECCV. 2006; p. 404–417.Google Scholar
  4. 4.
    Hassaballah M, Abdelmgeid AA, Alshazly HA. Image features detection, description and matching. In: Image Feature Detectors and Descriptors. Springer; 2016. p. 11–45.Google Scholar
  5. 5.
    Marr D, Hildreth E. Theory of edge detection. Proc R Soc Lond B Biol Sci. 1980;207(1167):187–217.Google Scholar
  6. 6.
    Viola P, Jones M. Rapid object detection using a boosted cascade of simple features. Proc CVPR. 2001;1:511–518.Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2018

Authors and Affiliations

  • Matthias Bergler
    • 1
  • Maximilian Weiherer
    • 1
  • Tobias Bergen
    • 1
  • Malte Avenhaus
    • 1
  • David Rauber
    • 1
  • Thomas Wittenberg
    • 1
  • Christian Münzenmayer
    • 1
  • Michaela Benz
    • 1
  1. 1.Fraunhofer Institute for Integrated CircuitsIIS ErlangenErlangenDeutschland

Personalised recommendations