Advertisement

Human Pose Estimation from Pressure Sensor Data

  • Leslie Casas
  • Chris Mürwald
  • Felix Achilles
  • Diana Mateus
  • Dietrich Huber
  • Nassir Navab
  • Stefanie Demirci
Conference paper
Part of the Informatik aktuell book series (INFORMAT)

Zusammenfassung

In-bed motion monitoring has become of great interest for a variety of clinical applications. In this paper, we introduce a hashbased learning method to retrieve human poses from pressure sensors data in real time considering temporal correlation between poses. The basis of our approach is a multimodal database describing different in-bed activities. Database entries have been created using an array of pressure sensors and an additional motion capture system. Our results show good performance even in poses where the subject has minimal contact with the sensors

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Achilles F, Ichim AE, Coskun H, et al. Patient MoCap: Human pose estimation under blanket occlusion for hospital monitoring applications. Proc MICCAI. 2016;Part A:491–499.Google Scholar
  2. 2.
    Hoque E, Dickerson RF, Stankovic JA. Monitoring body positions and movements during sleep using WISPs. New York, NY, USA: ACM; 2010.Google Scholar
  3. 3.
    Heydarzadeh M, Nourani M, Ostadabbas S. In-bed posture classification using deep autoencoders. Proc EMBC. 2016; p. 3839–3842.Google Scholar
  4. 4.
    Toms MP. Patient movement detection. Google Patents; 2000. US Patent 6,036,660. Available from: https://www.google.com/patents/US6036660.
  5. 5.
    Alaziz M, Jia Z, Liu J, et al. Motion scale: a body motion monitoring system using bed-mounted wireless load cells. Proc IEEE CHASE. 2016 June; p. 183–192.Google Scholar
  6. 6.
    Harada T, Sato T, Mori T. Pressure distribution image based human motion tracking system using skeleton and surface integration model; 2001.Google Scholar
  7. 7.
    Gong Y, Lazebnik S, Gordo A, et al.. Iterative quantization: a procrustean approach to learning binary codes for large-scale image retrieval; 2013.Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2018

Authors and Affiliations

  • Leslie Casas
    • 1
    • 2
  • Chris Mürwald
    • 2
  • Felix Achilles
    • 1
    • 2
  • Diana Mateus
    • 1
  • Dietrich Huber
    • 2
  • Nassir Navab
    • 1
    • 2
  • Stefanie Demirci
    • 1
    • 2
  1. 1.Computer Aided Medical ProceduresTechnische Universität MünchenMünchenDeutschland
  2. 2.SanvisioViennaÖsterreich

Personalised recommendations