A Joint Probabilistic Model for Speckle Variance, Amplitude Decorrelation and Interframe Variance (IFV) Optical Coherence Tomography Angiography

  • Stefan B. Ploner
  • Christian Riess
  • Julia Schottenhamml
  • Eric M. Moult
  • Nadia K. Waheed
  • James G. Fujimoto
  • Andreas Maier
Conference paper
Part of the Informatik aktuell book series (INFORMAT)

Zusammenfassung

Optical Coherence Tomography Angiography (OCTA) is a general method to visualize blood flow in biological tissue. Despite its good results in practice, the commonly used Amplitude Decorrelation OCTA (AD-OCTA) measure suffers from a well-understood objective function, which makes it challenging to mathematically model post processing tasks like, e.g., denoising. In this paper, a probabilistic model is developed for the three OCTA measures Speckle Variance OCTA, ADOCTA and the newly proposed Interframe Variance OCTA (IFV-OCTA) to enable further tasks like regularization-based denoising. From a theoretical point of view, IFV-OCTA is shown to be in-between the other two methods and can act as a link between them. A small sized observer study suggests that the image quality of IFV-OCTA is comparable to the other methods. IFV-OCTA is a promising OCTA measure for algorithms that require a dependency on the interscan time.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography. Science. 1991 11;254(5035):1178–1181.Google Scholar
  2. 2.
    Mariampillai A, Standish BA, Moriyama EH, et al. Speckle variance detection of microvasculature using swept-source optical coherence tomography. Opt Lett. 2008;33(13):1530.Google Scholar
  3. 3.
    Jia Y, Tan O, Tokayer J, et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express. 2012;20(4):4710–4725.Google Scholar
  4. 4.
    Choi W, Potsaid B, Jayaraman V, et al. Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source. Opt Lett. 2013;38(3):338–340.Google Scholar
  5. 5.
    Choi W, Moult EM, Waheed NK, et al. Ultrahigh-speed, swept-source optical coherence tomography angiography in nonexudative age-related macular degeneration with geographic atrophy. Ophthalmology. 2015;122(12):2532–2544.Google Scholar
  6. 6.
    Ploner SB, Moult EM, Choi W, et al. Toward quantitative optical coherence tomography angiography: visualizing blood flow speeds in ocular pathology using variable interscan time analysis. Retina. 2016;36 Suppl 1:S118–S126.Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2018

Authors and Affiliations

  • Stefan B. Ploner
    • 1
  • Christian Riess
    • 1
  • Julia Schottenhamml
    • 1
    • 2
  • Eric M. Moult
    • 2
  • Nadia K. Waheed
    • 3
  • James G. Fujimoto
    • 2
  • Andreas Maier
    • 1
  1. 1.Pattern Recognition LabFAU Erlangen-NürnbergErlangenDeutschland
  2. 2.Department of Electrical Engineering and Computer Science, Research Laboratory for ElectronicsMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Ophthalmology, New England Eye CenterTufts Medical CenterBostonUSA

Personalised recommendations