Advertisement

Patient Surface Model and Internal Anatomical Landmarks Embedding

  • Xia Zhong
  • Norbert Strobel
  • Annette Birkhold
  • Markus Kowarschik
  • Rebecca Fahrig
  • Andreas Maier
Conference paper
Part of the Informatik aktuell book series (INFORMAT)

Zusammenfassung

The patient surface model has shown to be a useful asset to improve existing diagnostic and interventional tasks in a clinical environment. For example, in combination with RGB-D cameras, a patient surface model can be used to automate and accelerate the diagnostic imaging workflow, manage patient dose, and provide navigation assistance. A shortcoming of today’s patient surface models, however, is that, internal anatomical landmarks are not present. In this paper, we introduce a method to estimate internal anatomical landmarks based on the surface model of a patient. Our method relies on two major steps. First, we fit a template surface model is to a segmented surface of a CT dataset with annotated internal landmarks using keypoint and feature descriptor based rigid alignment and atlas-based non-rigid registration. In a second step, we find for each internal landmark a neighborhood on the template surface and learn a generalized linear embedding between neighboring surface vertices in the template and the internal landmark. We trained and evaluated our method using cross-validation in 20 datasets over 50 internal landmarks. We compared the performance of four different generalized linear models. The best mean estimation error over all the landmarks was achieved using the lasso regression method with a mean error of 12.19 ± 6.98 mm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Singh V, Chang Y, Ma K, et al. Estimating a patient surface model for optimizing the medical scanning workflow. Proc MICCAI. 2014; p. 472–479.Google Scholar
  2. 2.
    Johnson PB, Borrego D, Balter S, et al. Skin dose mapping for fluoroscopically guided interventions. Med Phys. 2011;38(10):5490–5499.Google Scholar
  3. 3.
    Bauer S, Wasza J, Haase S, et al. Multi-modal surface registration for markerless initial patient setup in radiation therapy using Microsoft’s kinect sensor. Proc IEEE ICCV. 2011; p. 1175–1181.Google Scholar
  4. 4.
    Anguelov D, Koller D, Pang HC, et al. Recovering articulated object models from 3D range data. Uncertain Artif Intell. 2004; p. 18–26.Google Scholar
  5. 5.
    5. Zhong X, Strobel N, Kowarschik M, et al. Comparison of default patient surface model estimation methods. Proc BVM. 2017; p. 281–286.Google Scholar
  6. 6.
    Darom T, Keller Y. Scale-invariant features for 3-D mesh models. IEEE Trans Image Process. 2012;21(5):2758–2769.Google Scholar
  7. 7.
    Sahillioğlu Y, Yemez Y. Minimum-distortion isometric shape correspondence using EM algorithm. IEEE Trans Pattern Anal Mach Intell. 2012;34(11):2203–2215.Google Scholar
  8. 8.
    Allen B, Curless B, Popović Z. The space of human body shapes: reconstruction and parameterization from range scans. ACM Trans Graph. 2003;22(3):587–594.Google Scholar
  9. 9.
    Roweis ST, Saul LK. Nonlinear dimensionality reduction by locally linear embedding. Science. 2000;290(5500):2323–2326.Google Scholar
  10. 10.
    del Toro OAJ, Goksel O, Menze B, et al. VISCERAL: visual concept extraction challenge in radiology. Proc VISCERAL Challenge at ISBI. 2014; p. 6–15.Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2018

Authors and Affiliations

  • Xia Zhong
    • 1
  • Norbert Strobel
    • 2
    • 4
  • Annette Birkhold
    • 2
  • Markus Kowarschik
    • 2
  • Rebecca Fahrig
    • 2
  • Andreas Maier
    • 1
    • 3
  1. 1.Pattern Recognition LabFAU Erlangen-NürnbergErlangenDeutschland
  2. 2.Siemens Healthcare GmbHForchheimDeutschland
  3. 3.Erlangen Graduate School in Advanced Optical Technologies(SAOT)ErlangenDeutschland
  4. 4.Fakultät für ElektrotechnikHochschule für angewandte Wissenschaften Würzburg-SchweinfurtWürzburg-SchweinfurtDeutschland

Personalised recommendations