Skip to main content

Molecular Dynamics Simulation of Friction in Self-Lubricating Materials: An Overview of Theories and Available Models

  • Chapter
  • First Online:
Self-Lubricating Composites

Abstract

In this chapter, an overview of theories and investigated computational models is presented. Among all available theoretical models, Quantum Mechanics (QM), Molecular Mechanics (MM), Monte Carlo (MC), and Molecular Dynamics (MD) are the most used models. MD was selected as the focus of this chapter, because of its high accuracy in predicting the molecular level motions while keeping the computational costs relatively low as well as availability of well-established modeling softwares (i.e., LAMMPS). MD models have been used to investigate mechanical and chemical behaviors of different phenomena, including friction and self-lubrication. The authors further reviewed available MD models in previous literatures with focus on self-lubricating materials. These models direct the contribution of different self-lubricating agents including graphite, graphene, MoS2, and poly tetra-fluoro ethylene (PTFE) on the friction behavior of different composites. This review was conducted in order to show the power of computational modeling to predict the molecular level behaviors of different physical models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Menezes, P.L., Reeves, C.J., Lovell, M.R.: Fundamentals of Lubrication, pp. 295–340. Springer, New York (2013). https://doi.org/10.1007/9781-4614-1945-7-10

    Book  Google Scholar 

  2. Omrani, E., Moghadam, A.D., Menezes, P.L., Rohatgi, P.K.: Influences of graphite reinforcement on the tribological properties of self-lubricating aluminum matrix composites for green tribology, sustainability, and energy efficiencya review. Int. J. Adv. Manuf. Technol. 83(1–4), 325–346 (2016)

    Article  Google Scholar 

  3. Dorri Moghadam, A., Schultz, B.F., Ferguson, J.B., Omrani, E., Rohatgi, P.K., Gupta, N.: Functional metal matrix composites: self-lubricating, self-healing, and nanocomposites-an outlook. JOM. 66(6), 872–881 (2014.) http://link.springer.com/10.1007/s11837-014-0948-5

    Article  CAS  Google Scholar 

  4. Shankara, A., Menezes, P.L., Simha, K.R.Y., Kailas, S.V.: Study of solid lubrication with MoS2 coating in the presence of additives using reciprocating ball-on-flat scratch tester. Sadhana. 33(3), 207–220 (2008.) http://link.springer.com/10.1007/s12046-008-0014-5

    Article  CAS  Google Scholar 

  5. Omrani, E., Dorri Moghadam, A., Menezes, P.L., Rohatgi, P.K.: New Emerging Self-lubricating Metal Matrix Composites for Tribological Applications, pp. 63–103. Springer, Cham (2016). https://doi.org/10.1007/9783-319-24007-7-3

    Book  Google Scholar 

  6. Chen, W.X., Li, F., Han, G., Xia, J.B., Wang, L.Y., Tu, J.P., Xu, Z.D.: Tribological behavior of carbon-nanotube-filled PTFE composites. Tribol. Lett. 15(3), 275–278 (2003)

    Article  CAS  Google Scholar 

  7. Krick, B.A., Ewin, J.J., Blackman, G.S., Junk, C.P., Gregory Sawyer, W.: Environmental dependence of ultra-low wear behavior of polytetrafluoroethylene (PTFE) and alumina composites suggests tribochemical mechanisms. Tribol. Int. 51, 42–46 (2012). https://doi.org/10.1016/j.triboint.2012.02.015

    Article  CAS  Google Scholar 

  8. Ye, J., Khare, H.S., Burris, D.L.: Transfer film evolution and its role in promoting ultralow wear of a PTFE nanocomposite. Wear. 297(1–2), 1095–1102 (2013)

    Article  CAS  Google Scholar 

  9. Chung, D.D.L.: Review: graphite. J. Mater. Sci. 37(8), 1475–1489 (2002)

    Article  CAS  Google Scholar 

  10. Onodera, T., Kawasaki, K., Nakakawaji, T., Higuchi, Y., Ozawa, N., Kurihara, K., Kubo, M.: Chemical reaction mechanism of polytetrafluoroethylene on aluminum surface under friction condition. J. Phys. Chem. C. 118(10), 5390–5396 (2014)

    Article  CAS  Google Scholar 

  11. Onodera, T., Kawasaki, K., Nakakawaji, T., Higuchi, Y., Ozawa, N., Kurihara, K., Kubo, M.: Effect of Tribochemical reaction on transfer-film formation by poly(tetrafluoroethylene). J. Phys. Chem. C. 118(22), 11820–11826 (2014). https://doi.org/10.1021/jp503331e

    Article  CAS  Google Scholar 

  12. Rohatgi, P.K., Ray, S., Liu, Y.: Tribological properties of metal matrix-graphite particle composites. Int. Mater. Rev. 37(1), 129–152 (1992). https://doi.org/10.1179/imr.1992.37.1.129

    Article  CAS  Google Scholar 

  13. Livshits, A.I., Shluger, A.L.: Self-lubrication in scanning-force-microscope image formation on ionic surfaces. Phys. Rev. B. 56(19), 12482 (1997)

    Article  CAS  Google Scholar 

  14. Orkin, S., Hudacko, V.: Self-lubricating bearing. US Patent 3,428,374, 18 Feb 1969. [Online]. Available: https://www.google.com/patents/US3428374

  15. MacKerell, J.A.D., Bashford, D., Bellott, M., Dunbrack, J.R.L., Evanseck, J.D., Field, M.J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F.T.K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D.T., Prodhom, B., Reiher, W.E., Roux, B., Schlenkrich, M., Smith, J.C., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D., Karplus, M.: All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B. 102(18), 3586–3616 (1998). https://doi.org/10.1021/jp973084f

    Article  CAS  Google Scholar 

  16. Allison, T.C., Coskuner, O., Gonzalez, C.A.: Metallic Systems: A Quantum Chemist’s Perspective. CRC Press, Boca Raton (2011)

    Book  Google Scholar 

  17. Mate, C.M., McClelland, G.M., Erlandsson, R., Chiang, S.: Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett. 59(17), 1942–1945 (1987). https://doi.org/10.1103/PhysRevLett.59.1942

    Article  CAS  Google Scholar 

  18. Butt, H.-J., Cappella, B., Kappl, M.: Force measurements with the atomic force microscope: technique, interpretation and applications. Surf. Sci. Rep. 59(1), 1–152 (2005)

    Article  CAS  Google Scholar 

  19. Jianping Gao, Luedtke, W.D., Gourdon, D., Ruths, M., Israelachvili, J.N., Landman, U.: Frictional forces and Amontons’ law: from the molecular to the macroscopic scale. J. Phys. Chem. B. 108(11), 3410–3425 (2004). https://doi.org/10.1021/jp036362l

    Article  CAS  Google Scholar 

  20. Vadgama, B.N.: Molecular Dynamics Simulations of Dry Sliding Asperities to Study Friction and Frictional Energy Dissipation. Ph.D. dissertation, Auburn University (2014)

    Google Scholar 

  21. Vadgama, B.N., Jackson, R.L., Harris, D.K.: Molecular scale analysis of dry sliding copper asperities. Appl. Nanosci. 5(4), 469–480 (2015.) http://link.springer.com/10.1007/s13204-014-0339-9

    Article  CAS  Google Scholar 

  22. Harrison, J.A., White, C.T., Colton, R.J., Brenner, D.W.: Molecular-dynamics simulations of atomic-scale friction of diamond surfaces. Phys. Rev. B. 46(15), 9700–9708 (1992). https://doi.org/10.1103/PhysRevB.46.9700

    Article  CAS  Google Scholar 

  23. Zhang, L., Tanaka, H.: Towards a deeper understanding of wear and friction on the atomic scalea molecular dynamics analysis. Wear. 211(1), 44–53 (1997.) http://linkinghub.elsevier.com/retrieve/pii/S0043164897000732

    Article  CAS  Google Scholar 

  24. Song, J., Srolovitz, D.J.: Atomistic simulation of multicycle asperity contact. Acta Mater. 55(14), 4759–4768 (2007)

    Article  CAS  Google Scholar 

  25. Liu, X., Liu, Z., Wei, Y.: Ploughing friction and nanohardness dependent on the tip tilt in nano-scratch test for single crystal gold. Comput. Mater. Sci. 110, 54–61 (2015)

    Article  CAS  Google Scholar 

  26. Zhang, H., Guo, Z., Gao, H., Chang, T.: Stiffness-dependent interlayer friction of graphene. Carbon. 94, 60–66 (2015)

    Article  CAS  Google Scholar 

  27. Bai, L., Sha, Z.-D., Srikanth, N., Pei, Q.-X., Wang, X., Srolovitz, D.J., Zhou, K.: Friction between silicon and diamond at the nanoscale. J. Phys. D Appl. Phys. 48(25), 255303 (2015)

    Article  Google Scholar 

  28. Hurley, R.C., Andrade, J.E.: Friction in inertial granular flows: competition between dilation and grain-scale dissipation rates. Granul. Matter. 17(3), 287–295 (2015). https://doi.org/10.1007/s10035-015-0564-2

    Article  CAS  Google Scholar 

  29. Hu, C., Bai, M., Lv, J., Liu, H., Li, X.: Molecular dynamics investigation of the effect of copper nanoparticle on the solid contact between friction surfaces. Appl. Surf. Sci. 321, 302–309 (2014)

    Article  CAS  Google Scholar 

  30. Wang, L., Shen, B., Sun, F.: Investigation of the atomic-scale friction of boron doped diamond using molecular dynamics. J. Comput. Theor. Nanosci. 11, 1550 (2014)

    Article  CAS  Google Scholar 

  31. Spijker, P., Anciaux, G., Molinari, J.-F.: Relations between roughness, temperature and dry sliding friction at the atomic scale. Tribol. Int. 59, 222–229 (2013)

    Article  CAS  Google Scholar 

  32. Yang, X.J., Zhan, S.P., Chi, Y.L.: Molecular dynamics simulation of nanoscale sliding friction process between sphere and plane. Appl. Mech. Mater. 268–270, 1134–1142 (2012.) http://www.scientific.net/AMM.268-270.1134

    Article  Google Scholar 

  33. Lee, C., Li, Q., Kalb, W., Liu, X.-Z., Berger, H., Carpick, R.W., Hone, J.: Frictional characteristics of atomically thin sheets. Science. 328(October 2016), 76–80 (2010)

    Article  CAS  Google Scholar 

  34. Xu, L., Ma, T.B., Hu, Y.Z., Wang, H.: Molecular dynamics simulation of the interlayer sliding behavior in few-layer graphene. Carbon. 50(3), 1025–1032 (2012)

    Article  CAS  Google Scholar 

  35. Dorri Moghadam, A., Omrani, E., Menezes, P.L., Rohatgi, P.K.: Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene – a review. Compos. Part B. 77(July 2016), 402–420 (2015)

    Article  CAS  Google Scholar 

  36. Li, L., Niu, J.B., Xia, Z.H., Yang, Y.Q., Liang, J.Y.: Nanotube/matrix interfacial friction and sliding in composites with an amorphous carbon matrix. Scr. Mater. 65(11), 1014–1017 (2011)

    Article  CAS  Google Scholar 

  37. Yin, B., Peng, Z., Liang, J., Jin, K., Zhu, S., Yang, J., Qiao, Z.: Tribological behavior and mechanism of self-lubricating wear-resistant composite coatings fabricated by one-step plasma electrolytic oxidation. Tribol. Int. 97, 97–107 (2016). https://doi.org/10.1016/j.triboint.2016.01.020

    Article  CAS  Google Scholar 

  38. Xu, L., Ma, T.-B., Hu, Y.-Z., Wang, H.: Vanishing stick-slip friction in few-layer graphenes: the thickness effect. Nanotechnology. 22(28), 285708 (2011)

    Article  Google Scholar 

  39. Zhang, Q., Diao, D.: Potential of graphene layer controlling nano-wear during C60 intrusion by molecular dynamics simulation. Wear. 306(1–2), 248–253 (2012). https://doi.org/10.1016/j.wear.2012.09.003

    Article  CAS  Google Scholar 

  40. Yao, N., Lordi, V.: Young’s modulus of single-walled carbon nanotubes. J. Appl. Phys. 84(i), 1939 (1998.) http://scitation.aip.org/content/aip/journal/jap/84/4/10.1063/1.368323

    Article  CAS  Google Scholar 

  41. Pavia, F., Curtin, W.: Interfacial sliding in carbon nanotube/diamond matrix composites. Acta Mater. 59(17), 6700–6709 (2011)

    Article  CAS  Google Scholar 

  42. Zhao, J., Jia, Y., Wei, N., Rabczuk, T.: Binding energy and mechanical stability of two parallel and crossing carbon nanotubes. Proc. R. Soc. Lond. A. 471(2180), 20150229 (2015)

    Article  Google Scholar 

  43. Zhang, C., Chen, S.: Defect- and dopant-controlled carbon nanotubes fabricated by self-assembly of graphene nanoribbons. Nano Res. 8(9), 2988–2997 (2015.) http://link.springer.com/10.1007/s12274-015-0804-0

    Article  CAS  Google Scholar 

  44. Ansari, R., Ajori, S., Ameri, A.: On the vibrational characteristics of singleand double-walled carbon nanotubes containing ice nanotube in aqueous environment. Appl. Phys. A. 121(1), 223–232 (2015.) http://link.springer.com/10.1007/s00339-015-9413-8

    Article  CAS  Google Scholar 

  45. Ghosh, S., Padmanabhan, V.: Adsorption of hydrogen on single-walled carbon nanotubes with defects. Diam. Relat. Mater. 59, 47–53 (2015)

    Article  CAS  Google Scholar 

  46. Stefanov, M., Enyashin, A.N., Heine, T., Seifert, G.: Nanolubrication: how do MoS2-based nanostructures lubricate? J. Phys. Chem. C. 112(46), 17764–17767 (2008)

    Article  CAS  Google Scholar 

  47. Dallavalle, M., Sandig, N., Zerbetto, F.: Stability, dynamics, and lubrication of MoS2 platelets and nanotubes. Langmuir ACS J. Surf. Colloid. 28(19), 7393–7400 (2012.) http://www.ncbi.nlm.nih.gov/pubmed/22530739

    Article  CAS  Google Scholar 

  48. Wang, Y., Yan, F.: Tribological properties of transfer films of PTFE-based composites. Wear. 261(11–12), 1359–1366 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Bakhshinejad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bakhshinejad, A., Nezafati, M., Kim, CS., D’Souza, R.M. (2018). Molecular Dynamics Simulation of Friction in Self-Lubricating Materials: An Overview of Theories and Available Models. In: Menezes, P., Rohatgi, P., Omrani, E. (eds) Self-Lubricating Composites. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56528-5_9

Download citation

Publish with us

Policies and ethics