Advertisement

Minimizing Aliasing Effects Using Faster Super Resolution Technique on Text Images

  • Soma DattaEmail author
  • Nabendu Chaki
  • Khalid Saeed
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10730)

Abstract

Image quality improvement is not bounded within the application of different types of filtering. Resolution improvement is also essential and it solely depends on the estimation of the unknown pixel value that involves a lot of computation. Here a resolution enhancement technique is proposed to reduce the aliasing effects from the text documented image with a reduced amount of computational time. The proposed hybrid method provides better resolution at most informative regions. Here, the unknown pixel value is estimated based on their local informative region. This technique finds the most informative areas, discontinuity at the edges and less informative areas separately. The foreground regions are segmented at the first phase. The unknown pixels values of the foreground regions are calculated in the second step. All-of-these separated images are combined together to construct the high-resolution image at the third phase. The proposed method is mainly verified on aliasing affected text documented images. A distinct advantage of the proposed method over other conventional approaches is that it requires lower computational time to construct a high-resolution image from a single low-resolution one.

Keywords

Single image super resolution Aliasing Clustering K nearest neighbour Feature similarity index metrics 

Notes

Acknowledgement

I would like to acknowledge Visvesvaraya PhD Scheme for Electronics and IT. I am also thankful to Department of Computer Science and Engineering, University of Calcutta for infrastructural supports.

References

  1. 1.
    Tabedzki, M., Saeed, K., Szczepański, A.: A modified K3M thinning algorithm. Int. J. Appl. Math. Comput. Sci. 26(2), 439–450 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Buczkowski, M., Saeed, K.: Fusion-based noisy image segmentation method. In: Chaki, R., Cortesi, A., Saeed, K., Chaki, N. (eds.) Advanced Computing and Systems for Security. AISC, vol. 396, pp. 21–35. Springer, New Delhi (2016).  https://doi.org/10.1007/978-81-322-2653-6_2 CrossRefGoogle Scholar
  3. 3.
    Fujisawa, H.: Forty years of research in character and document recognition—an industrial perspective. Pattern Recogn. 41(8), 2435–2446 (2008)CrossRefGoogle Scholar
  4. 4.
    Yuan, L., Sun, J., Quan, L., Shum, H.Y.: Image deblurring with blurred/noisy image pairs. ACM Trans. Graph. (TOG) 26, 1 (2007). ACMCrossRefGoogle Scholar
  5. 5.
    Jimenez, J., Echevarria, J.I., Sousa, T., Gutierrez, D.: SMAA: enhanced subpixel morphological antialiasing. Comput. Graph. Forum 31, 355–364 (2012). Wiley Online LibraryCrossRefGoogle Scholar
  6. 6.
    Papandreou, A., Gatos, B.: A novel skew detection technique based on vertical projections. In: 2011 International Conference on Document Analysis and Recognition (ICDAR), pp. 384–388. IEEE (2011)Google Scholar
  7. 7.
    LatifoğLu, F.: A novel approach to speckle noise filtering based on artificial bee colony algorithm: an ultrasound image application. Comput. Methods Programs Biomed. 111(3), 561–569 (2013)CrossRefGoogle Scholar
  8. 8.
    Chen, J., Benesty, J., Huang, Y., Doclo, S.: New insights into the noise reduction Wiener filter. IEEE Trans. Audio Speech Lang. Process. 14(4), 1218–1234 (2006)CrossRefGoogle Scholar
  9. 9.
    Fan, K.C., Wang, Y.K., Lay, T.R.: Marginal noise removal of document images. Pattern Recogn. 35(11), 2593–2611 (2002)CrossRefzbMATHGoogle Scholar
  10. 10.
    Nyquist, H.: Certain topics in telegraph transmission theory. Proc. IEEE 90(2), 280–305 (2002)CrossRefGoogle Scholar
  11. 11.
    Kaur, J., Kaur, M., Kaur, P., Kaur, M.: Comparative analysis of image denoising techniques. Int. J. Emerg. Technol. Adv. Eng. 2(6), 296–298 (2012)zbMATHGoogle Scholar
  12. 12.
    Park, S.C., Park, M.K., Kang, M.G.: Super-resolution image reconstruction: a technical overview. IEEE Signal Process. Mag. 20(3), 21–36 (2003)CrossRefGoogle Scholar
  13. 13.
    Nasrollahi, K., Moeslund, T.B.: Super-resolution: a comprehensive survey. Mach. Vis. Appl. 25(6), 1423–1468 (2014)CrossRefGoogle Scholar
  14. 14.
    Li, X., Lam, K.M., Qiu, G., Shen, L., Wang, S.: Example-based image super-resolution with class-specific predictors. J. Vis. Commun. Image Represent. 20(5), 312–322 (2009)CrossRefGoogle Scholar
  15. 15.
    Thouin, P.D., Chang, C.I.: A method for restoration of low-resolution document images. Int. J. Doc. Anal. Recogn. 2(4), 200–210 (2000)CrossRefGoogle Scholar
  16. 16.
    Park, J., Kwon, Y., Kim, J.H.: An example-based prior model for text image super-resolution. In: Proceedings of the Eighth International Conference on Document Analysis and Recognition, pp. 374–378. IEEE (2005)Google Scholar
  17. 17.
    Kim, H.Y.: Binary operator design by k-nearest neighbor learning with application to image resolution increasing. Int. J. Imaging Syst. Technol. 11(5), 331–339 (2000)CrossRefGoogle Scholar
  18. 18.
    Ho, T.C., Zeng, B.: Super-resolution image by curve fitting in the threshold decomposition domain. In: IEEE Asia Pacific Conference on Circuits and Systems, APCCAS 2008, pp. 332–335. IEEE (2008)Google Scholar
  19. 19.
    Shan, Q., Li, Z., Jia, J., Tang, C.K.: Fast image/video upsampling. ACM Trans. Graph. (TOG) 27(5), 153 (2008)CrossRefGoogle Scholar
  20. 20.
    Datta, S., Chaki, N., Choudhury, S.: Information density based image binarization for text document containing graphics. In: Saeed, K., Homenda, W. (eds.) CISIM 2016. LNCS, vol. 9842, pp. 105–115. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45378-1_10 CrossRefGoogle Scholar
  21. 21.
    Gonzalez, R.C., Woods, R.E.: Image processing. In: Digital Image Processing, vol. 2 (2007)Google Scholar
  22. 22.
    Ando, S.: Consistent gradient operators. IEEE Trans. Pattern Anal. Mach. Intell. 22(3), 252–265 (2000)CrossRefGoogle Scholar
  23. 23.
    Ghosh, P., Bhattacharjee, D., Nasipuri, M.: Blood smear analyzer for white blood cell counting: a hybrid microscopic image analyzing technique. Appl. Soft Comput. 46, 629–638 (2016)CrossRefGoogle Scholar
  24. 24.
    Southern California: USC-SIPI image database. University of Southern California. http://sipi.usc.edu/database/
  25. 25.
    von Ghega, C.R.: Ghega-dataset: a dataset for document understanding and classification. http://machinelearning.inginf.units.it/data-and-tools/ghega-dataset
  26. 26.
    Jagalingam, P., Hegde, A.V.: A review of quality metrics for fused image. Aquat. Procedia 4, 133–142 (2015)CrossRefGoogle Scholar
  27. 27.
    Zhang, L., Zhang, L., Mou, X., Zhang, D.: FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 20(8), 2378–2386 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Hanhart, P., Bernardo, M.V., Pereira, M., Pinheiro, A.M., Ebrahimi, T.: Benchmarking of objective quality metrics for HDR image quality assessment. EURASIP J. Image Video Process. 2015(1), 39 (2015)CrossRefGoogle Scholar
  29. 29.
    Keys, R.: Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Signal Process. 29(6), 1153–1160 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Li, X., Orchard, M.T.: New edge-directed interpolation. IEEE Trans. Image Process. 10(10), 1521–1527 (2001)CrossRefGoogle Scholar
  31. 31.
    Zheng, Y., Kang, X., Li, S., He, Y., Sun, J.: Real-time document image super-resolution by fast matting. In: 2014 11th IAPR International Workshop on Document Analysis Systems (DAS), pp. 232–236. IEEE (2014)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringUniversity of CalcuttaKolkataIndia
  2. 2.Bialystok University of TechnologyBialystokPoland

Personalised recommendations