Advertisement

Stereoscopic Image Quality Assessment

  • Yong Ding
Chapter

Abstract

One of the major trends of image quality assessment (IQA) is to develop from the 2D (planar) natural images to 3D (stereoscopic) ones, mainly because of the developing technique of 3D acquisition and display equipment. The necessity of studying stereoscopic IQA (IQA) is due to that the findings of 2D IQA are not feasible to be directly implemented. Although a stereoscopic image is merely consisted of an image pair, the binocular effects it brings about made SIQA a much more mysterious puzzle than directly averaging the results of assessing two planar images. Comparing to its 2D counterpart, SIQA research is undoubtedly still at an early stage. Fortunately, SIQA has received lots of attention in the most recent years, and significant progresses have been witnessed. Similar to 2D IQA, the theories of SIQA are built based upon the biological grounds of human visual system, especially its properties related to binocular vision. Therefore, the discussions in this chapter will start from basic concepts about stereoscopic images and binocular vision, which is followed by introduction to subjective and objective SIQA researches.

Keywords

Stereoscopic image Quality assessment Binocular vision Binocular rivalry Human visual system 

References

  1. Appina, B., Khan, S., & Channappayya, S. S. (2016). No-reference stereoscopic image quality assessment using natural scene statistics. Signal Processing: Image Communication, 43, 1–14.Google Scholar
  2. Barten, P. G. J. (2004). Formula for the contrast sensitivity of the human eye. Proceedings of SPIE, 5294, 231–238.CrossRefGoogle Scholar
  3. Bengio, Y. (2009). Learning deep architectures for AI. Boston, MA, USA: New Publishers Inc.MATHGoogle Scholar
  4. Benoit, A., Le Callet, P., Campisi, P., & Cousseau, R. (2008a). Quality assessment of stereoscopic images. EURASIP Journal on Image and Video Processing, 2008, 659024.CrossRefGoogle Scholar
  5. Benoit, A., Le Callet, P., Campisi P., & Cousseau, R. (2008b). Using disparity for quality assessment of stereoscopic images. In IEEE International Conference on Image Processing, October 2008, San Diego, United States.Google Scholar
  6. Bensalma, R., & Larabi, M. C. (2013). A perceptual metric for stereoscopic image quality assessment based on the binocular energy. Multidimensional Systems and Signal Processing, 24(2), 281–316.MathSciNetCrossRefMATHGoogle Scholar
  7. Blake, R. (1977). Threshold conditions for binocular rivalry. Journal of Experimental Psychology: Human Perception and Performance, 3(2), 251–257.Google Scholar
  8. Blake, R., & Fox, R. (1973). Psychophysical inquiry into binocular summation. Perception and Psychophysics, 14(1), 161–185.CrossRefGoogle Scholar
  9. Campisi, P., Le Callet, P., & Marini, E. (2007). Stereoscopic image quality assessment. In European Signal Processing Conference, September 2007, Poznan, Poland.Google Scholar
  10. Carnec, M., Le Callet, P., & Barba, D. (2003). An image quality assessment based on the perception of structural information. Proceedings of International Conference on Image Processing, 3, 185–188.Google Scholar
  11. Chandler, D. M., & Hemami, S. S. (2007). VSNR: a wavelet-based visual signal-to-noise ratio for natural images. IEEE Transactions on Image Processing, 16(9), 2284–2298.MathSciNetCrossRefGoogle Scholar
  12. Chen, J., Zhou, J., Sun, J., & Bovik, A. C. (2017). Visual discomfort prediction on stereoscopic images without explicit disparities. Signal Processing: Image Communication, 51, 50–60.Google Scholar
  13. Chen, M.-J., Cormack, L. K., & Bovik, A. C. (2013a). No-reference quality assessment of natural stereopairs. IEEE Transactions on Image Processing, 22(9), 3379–3397.MathSciNetCrossRefMATHGoogle Scholar
  14. Chen, M.-J., Su, C.-C., Kwon, D.-K., Cormack, L. K., & Bovik, A. C. (2013b). Full-reference quality assessment of stereopairs accounting for rivalry. Signal Processing: Image Communication, 28, 1143–1155.Google Scholar
  15. Choi, J., Kim, D., Choi, S., & Sohn, K. (2012). Visual fatigue modeling and analysis for stereoscopic video. Optical Engineering, 51(1), 017206.CrossRefGoogle Scholar
  16. Ding, J., & Sperling, G. (2006). A gain-control theory of binocular combination. Proceedings of the National Academy of Sciences of the United States of America, 103(4), 1141–1146.CrossRefGoogle Scholar
  17. Ding, Y., & Zhao, Y. (2017a). No-reference quality assessment for stereoscopic images considering visual discomfort and binocular rivalry. Electronics Letters, 53(25), 1646–1647.Google Scholar
  18. Ding, Y., Zhao, Y., & Zhao, X. (2017b). Image quality assessment based on multi-feature extraction and synthesis with support vector regression. Signal Processing: Image Communication, 54, 81–92.Google Scholar
  19. Ehrenstein, W. H., Arnold-Schulz-Gahmen, B. E., & Jaschinski, W. (2005). Eye preference within the context of binocular function. Graefe’s Archive for Clinical and Experimental Ophthalmology, 243(9), 926–932.CrossRefGoogle Scholar
  20. Eser, I., Durrie, D. S., Schwendeman, F., & Stahl, J. E. (2008). Association between ocular dominance and refraction. Journal of Refractive Surgery, 24(7), 685–689.Google Scholar
  21. Fahle, M. (1982). Binocular rivalry: Suppression depends on orientation and spatial frequency. Vision Research, 22(7), 787–800.CrossRefGoogle Scholar
  22. Fahle, M. (1987). Two eyes, for what? Naturwissenchaften, 74(8), 383–385.CrossRefGoogle Scholar
  23. Felzenszwalb, P. F., & Huttenlocher, D. P. (2006). Efficient belief propagation for early vision. International Journal of Computer Vision, 70(1), 41–54.CrossRefGoogle Scholar
  24. Geng, X., Shen, L., Li, K., & An, P. (2017). A stereoscopic image quality assessment model based on independent component analysis and binocular fusion property. Signal Processing: Image Communication, 52, 54–63.Google Scholar
  25. Ghadiyaram, D., & Bovik, A. C. (2014). Blind image quality assessment on real distorted images using deep belief nets. Proceedings of IEEE Global Conference on Signal and Information Processing, 2014, 946–950.Google Scholar
  26. Goldmann, L., De Simone, F., & Ebrahimi, T. (2010). Impact of acquisition distortions on the quality of stereoscopic images. In International Workshop on Video Processing, Quality Metrics, and Consumer Electronics, Janaury 2010, Scottsdale, United States.Google Scholar
  27. Gu, K., Zhai, G., Yang, X., & Zhang, W. (2014). Deep learning network for blind image quality assessment. Proceedings of IEEE International Conference on Image Processing, 2014, 511–515.Google Scholar
  28. Hachicha, W., Kaaniche, M., Beghdadi, A., & Cheikh, F. A. (2017). No-reference stereo image quality assessment based on joint wavelet decomposition and statistical models. Signal Processing: Image Communication, 54, 107–117.Google Scholar
  29. He, L., Tao, D., Li, X., & Gao, X. (2012). Sparse representation for blind image quality assessment. In IEEE International Conference on Computer Vision and Pattern Recognition (pp. 1146–1153).Google Scholar
  30. Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural Computing, 18(7), 1527–1554.MathSciNetCrossRefMATHGoogle Scholar
  31. Hirschmuller, H. (2005). Accurate and efficient stereo processing by semi-global matching and mutual information. In International Conference on Computer Vision and Pattern Recognition, June 2005, San Diego, United States.Google Scholar
  32. Howard, I. P., & Roger, B. J. (1995). Binocular vision and stereopsis. New York: Oxford University Press.Google Scholar
  33. Hou, W., Gao, X., Tao, D., & Li, X. (2015). Blind image quality assessment via deep learning. IEEE Transactions on Neural Network and Learning Systems, 26(6), 1275–1286.MathSciNetCrossRefGoogle Scholar
  34. Hou, X., Harel, J., & Koch, C. (2012). Image signature: Highlighting sparse salient regions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(1), 194–201.CrossRefGoogle Scholar
  35. Huang, C. B., Zhou, J., Lu, Z. L., & Zhou, Y. (2011). Deficient binocular combination reveals mechanisms of anisometropic amblyopia: Signal attenuation and interocular inhibition. Journal of Vision, 11(6), 4.CrossRefGoogle Scholar
  36. Huang, C. B., Zhou, J., Zhou, Y., & Lu, Z. L. (2010). Contrast and phase combination in binocular vision. PLoS ONE, 5(12), el5075.Google Scholar
  37. Julesz, B. (1960). Binocular depth perception of computer-generated patterns. Bell System Technical Journal, 39(5), 1125–1162.CrossRefGoogle Scholar
  38. Julesz, B. (1971). Foundations of cyclopean perception. Chicago: The University of Chicago Press.Google Scholar
  39. Kang, L., Ye, P., Li, Y., & Doermann, D. (2014). Convolutional neural networks for no-reference image quality assessment. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2014, 1733–1740.Google Scholar
  40. Kaptein, R. G., Kuijstersa, A., Lambooij, M. T. M., Ijsselsteijn, W. A., & Heynderickx, I. (2008). Performance evaluation of 3D-TV systems. Proceedings of SPIE, 6808, 680819.CrossRefGoogle Scholar
  41. Kaufman, L. (1974). Sight and mind: An introduction to visual perception. London, U.K.: Oxford Press.Google Scholar
  42. Khan, A. Z., & Crawford, J. D. (2001). Ocular dominance reverses as a function of horizontal gaze angle. Vision Research, 41(14), 1743–1748.CrossRefGoogle Scholar
  43. Kim, D., & Sohn, K. (2011). Visual fatigue prediction for stereoscopic image. IEEE Transactions on Circuits and Systems for Video Technology, 21(2), 231–236.CrossRefGoogle Scholar
  44. Klaus, A., Sormann, M., & Karner, K. (2006). Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure. Proceedings of the 18th International Conference on Pattern Recognition, 3, 15–18.Google Scholar
  45. Konolige, K. (1997). Small vision system: Hardware and implementation. In Proceedings of the 8th International Symposium in Robotic Research (pp. 203–212).Google Scholar
  46. Lambooij, M. T. M., Ijsselsteijn, W. A., & Heynderickx, I. (2009). Visual discomfort in stereoscopic displays: A review. In Conference on Stereoscopic Displays and Virtual Reality Systems XIV, Janauary 2009, San Jose, United States.Google Scholar
  47. Larson, E. C., & Chandler, D. M. (2010). Most apparent distortion: Full-reference image quality assessment and the role of strategy. Journal of Electronic Imaging, 19(1), 1–21.Google Scholar
  48. Levelt, W. J. M. (1965). Binocular brightness averaging and contour information. British Journal of Psychology, 56(1), 1–13.CrossRefGoogle Scholar
  49. Levelt, W. J. M. (1966). The alternation process in binocular rivalry. British Journal of Psychology, 57(3–4), 225–238.CrossRefGoogle Scholar
  50. Levelt, W. J. M. (1968). On binocular rivalry. Paris: Mouton.Google Scholar
  51. Li, K., Shao, F., Jiang, G., & Yu, M. (2015). Joint structure-texture sparse coding for quality prediction of stereoscopic images. Electronics Letters, 51(24), 1994–1995.CrossRefGoogle Scholar
  52. Lin, Y. H., & Wu, J. L. (2014a). Quality assessment of stereoscopic 3D image compression by binocular integration behaviors. IEEE Transactions on Image Processing, 23(4), 1527–1542.Google Scholar
  53. Liu, L., Liu, B., & Huang, H. (2014b). No-reference image quality assessment based on spatial and spectral entropies. Signal Processing: Image Communication, 29(8), 856–863.Google Scholar
  54. Liu, Y., Yang, J., Meng, Q., Lv, Z., Song, Z., & Gao, Z. (2016). Stereoscopic image quality assessment method based on binocular combination saliency model. Signal Processing, 125, 237–248.CrossRefGoogle Scholar
  55. Lv, Y., Yu, M., Jiang, G., Shao, F., Peng, Z., & Chen, F. (2016). No-reference stereoscopic image quality assessment using binocular self-similarity and deep neural network. Signal Processing: Image Communication, 47, 349–357.Google Scholar
  56. Md, S. K., Appina, B., & Channappayya, S. S. (2015). Full-reference stereo image quality assessment using natural scene statistics. IEEE Signal Processing Letters, 22(11), 1985–1989.CrossRefGoogle Scholar
  57. Meegan, D. V., Stelmach, L. B., & Tam, W. J. (2001). Unequal weighting of monocular inputs in binocular combination: Implications for the compression of stereoscopic imagery. Journal of Experimental Psychology: Applied, 7(2), 143–153.Google Scholar
  58. Mittal, A., Moorthy, A. K., & Bovik, A. C. (2012a). Making image quality assessment robust. In Conference Record of the Asilomar Conference on Signals, Systems and Computers (pp. 1718–1722).Google Scholar
  59. Mittal, A., Moorthy, A. K., & Bovik, A. C. (2012b). No-reference image quality assessment in the spatial domain. IEEE Transactions on Image Processing, 21(12), 4695–4708.MathSciNetCrossRefMATHGoogle Scholar
  60. Mohamed, A. R., Sainath, T. N., Dahl, G., Ramabhadran, B., Hinton, G. E. & Picheny, M. A. (2011). Deep belief networks using discriminative features for phone recognition. In IEEE International Conference on Acoustics, Speech, and Signal Processing (pp. 5060–5063).Google Scholar
  61. Moorthy, A. K., Su, C.-C., Mittal, A., & Bovik, A. C. (2013). Subjective evaluation of stereoscopic image quality. Signal Processing: Image Communication, 28(8), 870–883.Google Scholar
  62. Nojiri, Y., Yamanoue, H., Hanazato, A., & Okano, F. (2003). Measurement of parallax distribution and its application to the analysis of visual comfort for stereoscopic HDTV. Proceedings of SPIE, 5006, 195–205.CrossRefGoogle Scholar
  63. Oh, H., Ahn, S., Kim, J., & Lee, S. (2017). Blind deep S3D image quality evaluation via local to global feature aggregation. IEEE Transactions on Image Processing, 26(10), 4923–4936.MathSciNetCrossRefGoogle Scholar
  64. Ojala, T., Pietikäinen, M., & Mäenpää, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Recognition and Machine Intelligence, 24(7), 971–987.CrossRefMATHGoogle Scholar
  65. Park, J., Lee, S., & Bovik, A. C. (2014). 3D visual discomfort prediction: vergence, foveation, and the physiological optics of accommodation. IEEE Journal of Selected Topic in Signal Processing, 8(3), 415–427.CrossRefGoogle Scholar
  66. Porac, C., & Coren, S. (1975). Is eye dominance a part of generalized laterality? Perceptual and Motor Skills, 40(3), 763–769.CrossRefGoogle Scholar
  67. Qi, F., Zhao, D., & Gao, W. (2015). Reduced reference stereoscopic image quality assessment based on binocular perceptual information. IEEE Transactions on Multimedia, 17(12), 2338–2344.CrossRefGoogle Scholar
  68. Reiss, M. R. (1997). Ocular dominance: Some family data. Laterality, 2(1), 7–16.CrossRefGoogle Scholar
  69. Richardt, C., Świrski, L., Davies, I. P., & Dodgson, N. A. (2011). Predicting stereoscopic viewing comfort using a coherence-based computational model. In Proceedings of the International Symposium on Computational Aesthetics in Graphics, Visualization, and Imaging (pp. 97–104).Google Scholar
  70. Saad, M. A., Bovik, A. C., & Charrier, C. (2012). Blind image quality assessment: A natural scene statistics approach in the DCT domain. IEEE Transactions on Image Processing, 21(8), 3339–3352.MathSciNetCrossRefMATHGoogle Scholar
  71. Sazzad, Z. M. P., Yamanaka, S., Kawayokeita, Y., & Horita, Y. (2009). Stereoscopic image quality prediction. In International Workshop on Quality of Multimedia Experience, July 2009, San Diego, United States.Google Scholar
  72. Scharstein, D., & Szeliski, R. (2002). A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision, 47, 7–42.CrossRefMATHGoogle Scholar
  73. Seuntiëns, P. J. H., Meesters, L. M. J., & Ijsselsteijn, W. A. (2006). Perceived quality of compressed stereoscopic images: Effects of symmetric and asymmetric JPEG coding and camera separation. ACM Transactions on Applied Perception, 3, 95–109.CrossRefGoogle Scholar
  74. Shao, F., Lin, W., Gu, S., Jiang, G., & Srikanthan, T. (2013). Perceptual full-reference quality assessment of stereoscopic images by considering binocular visual characteristics. IEEE Transactions on Image Processing, 22(5), 1940–1953.MathSciNetCrossRefMATHGoogle Scholar
  75. Shao, F., Li, K., Lin, W., Jiang, G., & Yu, M. (2015a). Using binocular feature combination for blind quality assessment of stereoscopic images. IEEE Signal Processing Letters, 22(10), 1548–1551.CrossRefGoogle Scholar
  76. Shao, F., Li, K., Lin, W., Jiang, G., Yu, M., & Dai, Q. (2015b). Full-reference quality assessment of stereoscopic images by learning binocular receptive field properties. IEEE Transactions on Image Processing, 24(10), 2971–2983.MathSciNetCrossRefGoogle Scholar
  77. Shao, F., Li, K., Lin, W., Jiang, G., & Dai, Q. (2016a). Learning blind quality evaluator for stereoscopic images using joint sparse representation. IEEE Transactions on Multimedia, 18(10), 2104–2114.CrossRefGoogle Scholar
  78. Shao, F., Tian, W., Lin, W., Jiang, G., & Dai, Q. (2016b). Toward a blind deep quality evaluator for stereoscopic images based on monocular and binocular interactions. IEEE Transactions on Image Processing, 25(5), 2059–2074.MathSciNetCrossRefGoogle Scholar
  79. Sheikh, H. R., Sabir, M. F., & Bovik, A. C. (2006). A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Transactions on Image Processing, 15(11), 3440–3451.CrossRefGoogle Scholar
  80. Su, C. C., Bovik, A. C., & Cormack, L. K. (2011). Natural scene statistics of color and range. In IEEE International Conference on Image Processing (pp. 257–260).Google Scholar
  81. Su, C. C., Cormack, L. K., & Bovik, A. C. (2015). Oriented correlation models of distorted natural images with application to natural stereopair quality evaluation. IEEE Transactions on Image Processing, 24(5), 1685–1699.MathSciNetCrossRefGoogle Scholar
  82. Tang, H., Niranjan, J., & Ajay, K. (2014). Blind image quality assessment using semi-supervised rectifier networks. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2014, 2877–2884.Google Scholar
  83. Wang, H., Yang, J., Lu, W., Li, B., Tian, K., & Meng, Q. (2016). No-reference stereoscopic image-quality metric accounting for left and right similarity map and spatial structure degradation. Optics Letters, 41(24), 5640–5643.CrossRefGoogle Scholar
  84. Wang, X., Yu, M., Yang, Y., & Jiang, G. (2009). Research on subjective stereoscopic image quality assessment. Proceedings of SPIE, 7255, 725509.CrossRefGoogle Scholar
  85. Wang, J., & Wang, Z. (2014). Perceptual quality of asymmetrically distorted stereoscopic images: the role of image distortion types. In International Workshop on Video Processing & Quality Metrics for Consumer Electronics, Chandler, Arizona, USA.Google Scholar
  86. Wang, J., Rehman, A., Zeng, K., Wang, S., & Wang, Z. (2015). Quality prediction of asymmetrically distorted stereoscopic 3D images. IEEE Transactions on Image Processing, 24(11), 3400–3414.MathSciNetCrossRefGoogle Scholar
  87. Wang, J., Zeng, K., & Wang, Z. (2014). Quality prediction of asymmetrically distorted stereoscopic images from single views. In IEEE International Conference on Multimedia and Expo Workshops, July 14–18, Chengdu, China.Google Scholar
  88. Wang, Z., & Bovik, A. C. (2002). A universal image quality index. IEEE Signal Processing Letters, 9(3), 81–84.CrossRefGoogle Scholar
  89. Wang, Z., & Li, Q. (2011). Image content weighting for perceptual image quality assessment. IEEE Transactions on Image Processing, 20(5), 1185–1198.MathSciNetCrossRefMATHGoogle Scholar
  90. Wang, Z., & Shang, X. (2006). Spatial pooling strategies for perceptual image quality assessment. In Proceeding of IEEE International Conference on Image Processing (pp. 2945–2948).Google Scholar
  91. Wang, Z., & Simoncelli, E. P. (2005). Reduced-reference image quality assessment using a wavelet-domain natural image statistic model. Human Vision and Electronic Imaging X, Proceedings of the SPIE, 5666, 149–159.CrossRefGoogle Scholar
  92. Wang, Z., Simoncelli, E. P., & Bovik, A. C. (2003). Multi-scale structural similarity for image quality assessment. In: Conference Records of the Asilomar Conference on Signals, Systems and Computers (pp. 1398–1402).Google Scholar
  93. Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612.CrossRefGoogle Scholar
  94. Wu, J., Lin, W., Shi, G., Zhang, Y., Dong, W., & Chen, Z. (2015). Visual orientation selectivity based structure description. IEEE Transactions on Image Processing, 24(11), 4602–4613.MathSciNetCrossRefGoogle Scholar
  95. Xu, X., Zhao, Y., & Ding, Y. (2017). No-reference stereoscopic image quality assessment based on saliency-guided binocular feature consolidation. Electronics Letter, 53(22): 1468–1470.Google Scholar
  96. Xue, W., Mou, X., Zhang, L., Bovik, A. C., & Feng, X. (2014). Blind image quality assessment using joint statistics of gradient magnitude and Laplacian features. IEEE Transactions on Image Processing, 23(11), 4850–4862.MathSciNetCrossRefMATHGoogle Scholar
  97. Yamashita, T., Tanaka, M., Yoshida, E., Yamauchi, Y., & Fujiyoshii, H. (2014). To be Bernoulli or to be Gaussian, for a restricted Boltzmann machine. In: Proceedings of International Conference on Pattern Recognition (pp. 1520–1525).Google Scholar
  98. Yang, J., Hou, C., & Xu, R. (2010). New metric for stereo image quality assessment based on HVS. International Journal of Image Systems and Technology, 20(4), 2010.Google Scholar
  99. Yang, J., Hou, C., Zhou, Y., Zhang, Z., & Guo, J. (2009). Objective quality assessment method of stereo images. In 2009 3DTV-Conference: The True Vision—Capture, Transmission and Display of 3D Video, May 2009, Potsdam, Germany.Google Scholar
  100. Yano, S., Ide, S., Mitsuhashi, T., & Thwaites, H. (2002). A study of visual fatigue and visual discomfort for 3D HDTV/HDTV images. Displays, 23(4), 191–201.CrossRefGoogle Scholar
  101. Yang, Y., & Blake, R. (1991). Spatial frequency tuning of human stereopsis. Vision Research, 31(7–8), 1176–1189.CrossRefGoogle Scholar
  102. Yasakethu, S. L. P., Hewage, C. T. E. R., Fernando, W. A. C., & Kondoz, A. M. (2008). Quality analysis for 3D video using 2D video quality models. IEEE Transactions on Consumer Electronics, 54(4), 1969–1976.CrossRefGoogle Scholar
  103. You, J., Xing, L., Perkis, A., & Wang, X. (2010). Considering binocular spatial sensitivity in stereoscopic image quality assessment. In: Proceedings of the International Workshop of Video Processing (pp. 61–66).Google Scholar
  104. Zhang, W., Qu, C., Ma, L., Guan, J., & Huang, R. (2016). Learning structure of stereoscopic image for no-reference quality assessment with convolutional neural network. Pattern Recognition, 59, 176–187.CrossRefGoogle Scholar
  105. Zhang, Y., & Chandler, D. M. (2015). 3D-MAD: A full reference stereoscopic image quality estimator based on binocular lightness and contrast perception. IEEE Transactions on Image Processing, 24(11), 3810–3825.MathSciNetCrossRefGoogle Scholar
  106. Zhao, Y., Ding, Y., & Zhao, X. (2016). Image quality assessment based on complementary local feature extraction and quantification. Electronics Letters, 52(22), 1849–1851.CrossRefGoogle Scholar
  107. Zhou, J., Jiang, G., Mao, X., Yu, M., Shao, F., Peng, Z. & Zhang, Y. (2011). In IEEE International Conference on Visual Communications and Image Processing, November 2011, Tainan, Taiwan.Google Scholar
  108. Zhou, W., Jiang, G., Yu, M., Shao, F., & Peng, Z. (2014a). PMFS: A perceptual modulated feature similarity metric for stereoscopic image quality assessment. IEEE Signal Processing Letters, 21(8), 1003–1006.CrossRefGoogle Scholar
  109. Zhou, W., Jiang, G., Yu, M., Shao, F., & Peng, Z. (2014b). Reduced-reference stereoscopic image quality assessment based on view and disparity zero-watermarks. Signal Processing: Image Communication, 29(1), 167–176.Google Scholar
  110. Zhou, W., & Yu, L. (2016). Binocular responses for no-reference 3D image quality assessment. IEEE Transactions on Multimedia, 18(6), 1077–1084.MathSciNetCrossRefGoogle Scholar
  111. Zhou, W., Yu, L., Qiu, W., Wang, Z., & Wu, M. (2016). Utilizing binocular vision to facilitate completely blind 3D image quality measurement. Signal Processing, 129, 130–136.CrossRefGoogle Scholar
  112. Zhou, W., Qiu, W., & Wu, M. (2017a). Utilizing dictionary learning and machine learning for blind quality assessment of 3-D images. IEEE Transactions on Broadcasting, 63(1), 404–415.CrossRefGoogle Scholar
  113. Zhou, W., Zhang, S., Pan, T., Yu, L., Qiu, W., Zhou, Y., et al. (2017b). Blind 3D image quality assessment based on self-similarity of binocular features. Neurocomputing, 224, 128–134.CrossRefGoogle Scholar

Copyright information

© Zhejiang University Press, Hangzhou and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.Zhejiang UniversityHangzhouChina

Personalised recommendations