Skip to main content

Image Quality Assessment Based on Natural Image Statistics

  • Chapter
  • First Online:
Visual Quality Assessment for Natural and Medical Image
  • 782 Accesses

Abstract

Since human visual system (HVS) is highly adapted to extract statistical information from the viewing scenes, extracting and mathematically modeling natural scene statistics (NSS) is a promising solution for image quality assessment (IQA), as an alteration for simulating HVS properties that is discussed in the previous chapter. Depending on how statistics information is modeled, in this chapter, we conclude and introduce several representative NSS-based types of methods. The first class of methods discussed in the chapter are based on the hypothesis underlying structural similarity, which assume the natural images are highly structured, and lower-quality images fail to have the similar structural information. Then, methods with local textural information extraction aiming at utilizing the statistical distribution changing with distort to measure distortion are introduced. Subsequently, the methods based on finding hidden independent components in nature images are presented. Finally, we put forward the methods that extract quality-aware features based on multifractal analysis, which capture the statistical complexity information of images in accordance with HVS. It is really worthy to point out that exploiting the image information jointly in different domains is necessary and constructive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahonen, T., Hadid, A., & Pietikainen, M. (2006). Face description with local binary patterns: Application to face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(12), 2037–2041.

    Article  MATH  Google Scholar 

  • Allain, C., & Cloitre, M. (1991). Characterizing the lacunarity of random and deterministic fractal sets. Physical Review A, 44(6), 3552–3558.

    Article  MathSciNet  Google Scholar 

  • Asvestas, P., Matsopoulos, G. K., & Nikita, K. S. (1998). A power differentiation method of fractal dimension estimation for 2-D signals. Journal of Visual Communication and Image Representation, 9(4), 392–400.

    Article  Google Scholar 

  • Balghonaim, A. S., & Keller, J. M. (1998). A maximum likelihood estimate for two-variable fractal surface. IEEE Transactions on Image Processing, 7(12), 1746–1753.

    Article  Google Scholar 

  • Chang, H. W., Zhang, Q. W., Wu, Q. G., & Gan, Y. (2015). Perceptual image quality assessment by independent feature detector. Neurocomputing, 151(3), 1142–1152.

    Article  Google Scholar 

  • Chaudhuri, B. B., & Sarker, N. (2002). Texture segmentation using fractal dimension. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(1), 72–77.

    Article  Google Scholar 

  • Costa, M. F., Barboni, M. T. S., & Ventura, D. F. (2011). Psychophysical measurements of luminance and chromatic spatial and temporal contrast sensitivity in duchenne muscular dystrophy. Psychology & Neuroscience, 4(1), 67–74.

    Article  Google Scholar 

  • Deng, R., Zhao, Y. & Ding, Y. (2017). Hierarchical feature extraction assisted with visual saliency for image quality assessment. Journal of Engineering, 4752378.

    Google Scholar 

  • Ding, Y., Zhang, Y., Zhang, D., & Wang, X. (2012). Weighted multi-scale structural similarity for image quality assessment with saliency-based pooling strategy. International Journal of Digital Content Technology and its Applications, 6(5), 67–78.

    Article  Google Scholar 

  • Ding, Y., Dai, H., & Wang, S. (2014). Image quality assessment scheme with topographic independent components analysis for sparse feature extraction. Electronics Letters, 50(7), 509–510.

    Article  Google Scholar 

  • Ding, Y., Zhang, H., Luo, X. H., & Dai, H. (2015). Blind image quality assessment based on fractal description of natural scenes. Electronics Letters, 51(4), 338–339.

    Article  Google Scholar 

  • Ding, Y., Chen, H. D., Zhao, Y., & Zhu, Y. F. (2016a). No-reference image quality assessment based on Gabor filters and nonlinear feature extraction. International Journal of Digital Content Technology and its Applications, 10(5), 100–109.

    Google Scholar 

  • Ding, Y., Li, N., Zhao, Y., & Huang, K. (2016b). Image quality assessment method based on non-linear feature extraction in kernel space. Frontiers of Information Technology & Electronic Engineering, 17(10), 1008–1017.

    Article  Google Scholar 

  • Ding, Y., Zhao, X. Y., Zhang, Z., & Dai, H. (2017). Image quality assessment based on multi-order local features description, modeling and quantification. IEICE Transactions on Information and Systems, E, 100D(6), 1303–1315.

    Article  Google Scholar 

  • Du, S., Yan, Y., & Ma, Y. (2016). Blind image quality assessment with the histogram sequences of high-order local derivative patterns. Digital Signal Processing, 55, 1–12.

    Article  Google Scholar 

  • Engelke, U., Nguyen, V. X., & Zepernick, H.-J. (2008). Regional attention to structural degradations for perceptual image quality metric design. In 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, 869–872.

    Google Scholar 

  • Eskicioglu, A. M., & Fisher, P. S. (1995). Image quality measures and their performance. IEEE Transactions on Communications, 43(12), 2959–2965.

    Article  Google Scholar 

  • Fan, K. C., & Hung, T. Y. (2014). A novel local pattern descriptor local vector pattern in high-order derivative space for face recognition. IEEE Transactions on Image Processing, 23(7), 2877–2891.

    Article  MathSciNet  MATH  Google Scholar 

  • Field, D. J. (1987). Relations between the statistics of natural images and the response properties of cortical cells. Journal of the Optical Society of America A, 4(12), 2379–2394.

    Article  Google Scholar 

  • Fränti, P. (1998). Blockwise distortion measure for statistical and structural errors in digital images. Signal Processing: Image Communication, 13(2), 89–98.

    Google Scholar 

  • Geng, X., Shen, L., Li, K., & An, P. (2016). A stereoscopic image quality assessment model based on independent component analysis and binocular fusion property. Signal Processing Image Communication, 2017(52), 54–63.

    Google Scholar 

  • Ghosh, K., Sarkar, S., & Bhaumik, K. (2007). Understanding image structure from a new multi-scale representation of higher order derivative filters. Image and Vision Computing, 25(8), 1228–1238.

    Article  Google Scholar 

  • Goodman, J. S., & Pearson, D. E. (1979). Multidimensional scaling of multiply-impaired television pictures. IEEE Transactions on Systems, Man, and Cybernetics, 9(6), 353–356.

    Article  Google Scholar 

  • Gu, K., Zhou, J., Qiao, J.-F., Zhai, G., Lin, W., & Bovik, A. C. (2017). No-reference quality assessment of screen content pictures. IEEE Transactions on Image Processing, 26(8), 4005–4018.

    Article  MathSciNet  Google Scholar 

  • Guo, Z., Zhang, L., & Zhang, D. (2010). A completed modeling of local binary pattern operator for texture classification. IEEE Transactions on Image Processing, 19(6), 1657–1663.

    Article  MathSciNet  MATH  Google Scholar 

  • Guo, W., & Zong, Q. (2012). A blind separation method of instantaneous speech signal via independent components analysis. In International Conference on Consumer Electronics, 3001–3004.

    Google Scholar 

  • Han, X.-H., Chen, Y.-W., & Gang, X. (2015). High-order statistics of weber local descriptors for image representation. IEEE Transactions on Cybernetics, 45(6), 1180–1193.

    Article  Google Scholar 

  • Henriksson, L., Hyvärinen, A., & Vanni, S. (2009). Representation of cross frequency spatial phase relationships in human visual cortex. Journal of Neuroscience, 29(45), 14342–14351.

    Article  Google Scholar 

  • Huang, L., Cui, X., Lin, J., & Shi, Z. (2011). A new reduced-reference image quality assessment method based on SSIM. Applied Mechanics and Materials, 55, 31–36.

    Google Scholar 

  • Huang, D., Zhu, C., Wang, Y., & Chen, L. (2014). HSOG: A novel local image descriptor based on histograms of the second-order gradients. IEEE Transactions on Image Processing, 23(11), 4680–4695.

    Article  MathSciNet  MATH  Google Scholar 

  • Humeau, A., Buard, B., Mahé, G., Chapeau-Blondeau, F., Rousseau, D., & Abraham, P. (2010). Multifractal analysis of heart rate variability and laser doppler flowmetry fluctuations: comparison of results from different numerical methods. Physics in Medicine & Biology, 55(20), 6279–6297.

    Article  Google Scholar 

  • Hyvärinen, A., Hoyer, P. O., & Inki, M. (2001). Topographic independent component analysis. Neural Computation, 13(7), 1527–1558.

    Article  MATH  Google Scholar 

  • Hyvärinen, A., Hurri, J., & Hoyer, P. O. (2009). Natural image statistics: A probabilistic approach to early computational vision. London: Springer-Verlag.

    Book  MATH  Google Scholar 

  • Ida, T., & Sambonsugi, Y. (1998). Image segmentation and contour detection using fractal coding. IEEE Transactions on Circuits System Video Technology, 8(8), 968–977.

    Article  Google Scholar 

  • Jain, R., Kasturi, R., & Schunck, B. G. (1995). Machine Vision. New York: McGraw-Hill.

    Google Scholar 

  • Jiao, S., Qi, H., Lin, W., & Shen, W. (2013). Fast and efficient blind image quality index in spatial domain. Electronic Letters, 49(18), 1137–1138.

    Article  Google Scholar 

  • Jähne, B., Haubecker, H., & Geibler, P. (1999). Handbook of computer vision and applications. New York: Academic.

    Google Scholar 

  • Kasturiwate, H. P., & Deshmukh, C. N. (2009). Quality assessment of ICA for ECG signal analysis. In International Conference on Emerging Trends in Engineering and Technology, 73–75.

    Google Scholar 

  • Kovesi, P. (1999). Image features from phase congruency. Journal of Computer Vision Research, 1(3), 1–26.

    Google Scholar 

  • Kruger, N., Janssen, P., Kalkan, S., Lappe, M., Leonardis, A., Piater, J., et al. (2013). Deep hierarchies in the primate visual cortex: What can we learn for computer vision? IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1847–1871.

    Article  Google Scholar 

  • Larson, E. C., & Chandler, D. M. (2008). Unveiling relationships between regions of interest and image fidelity metrics. Proceeding of SPIE 6822, Visual Communications and Image Processing 2008, 68222A.

    Google Scholar 

  • Larson, E. C., Vu, C. T., & Chandler, D. M. (2008). Can visual fixation patterns improve image fidelity assessment? 15th IEEE International Conference on Image Processing, 3: 2572–2575.

    Google Scholar 

  • Lei, Z., Liao, S., Pietikäinen, M., & Li, S. Z. (2011). Face recognition by exploring information jointly in space, scale and orientation. IEEE Transactions on Image Processing, 20(1), 247–256.

    Article  MathSciNet  Google Scholar 

  • Li, C. F., & Bovik, A. C. (2009). Three-component weighted structural similarity index. Proceedings of SPIE, 7242, image quality and system performance VI: 72420Q.

    Google Scholar 

  • Li, J., Du, Q., & Sun, C. (2009). An improved box-counting method for image fractal dimension estimation. Pattern Recognition, 42(11), 2460–2469.

    Article  MATH  Google Scholar 

  • Li, J., Duan, L. Y., Chen, X., Huang, T., & Tian, Y. (2015). Finding the secret of image saliency in the frequency domain. IEEE Transactions Pattern Analysis and Machine Intelligence, 37(12), 2428–2440.

    Article  Google Scholar 

  • Liu, S., & Chang, S. (1997). Dimension estimation of discrete-time fractional Brownian motion with applications to image texture classification. IEEE Transactions on Image Processing, 6(8), 1176–1184.

    Article  Google Scholar 

  • Lin, K. H., Lam, K. M., & Siu, W. C. (2001). Locating the eye in human face images using fractal dimensions. IEEE Proceedings on Vision, Image and Signal Processing, 148(6), 413–421.

    Article  Google Scholar 

  • Liu, C., & Yang, J. (2009). ICA color space for pattern recognition. IEEE Transactions on Neural Networks, 20(2), 248–257.

    Article  Google Scholar 

  • Liu, D., Sun, D. M., & Qiu, Z. D. (2010). Feature selection for fusion of speaker verification via Maximum Kullback-Leibler distance. Signal Processing (ICSP), 2010 IEEE 10th International Conference on, Beijing, 565–568.

    Google Scholar 

  • Loh, N., Hampton, C., Martin, A., Starodub, D., Sierra, R., Barty, A., et al. (2012). Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight. Nature, 486(7404), 513–517.

    Article  Google Scholar 

  • Luo, Y. T., Zhao, L. Y., Zhang, B., Jia, W., Xue, F., Lu, J. T., et al. (2016). Local line directional pattern for palmprint recognition. Pattern Recognition, 50, 26–44.

    Article  Google Scholar 

  • Mancas-Thillou, C., & Gosselin, B. (2006). Character segmentation-by-recognition using log-Gabor filters. 18th International Conference on Pattern Recognition, 901–904.

    Google Scholar 

  • Mandelbrot, B. B. (1967). How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science, 156(3775), 636–638.

    Google Scholar 

  • Mandelbrot, B. B., & Wheeler, J. A. (1983). The fractal geometry of nature. Journal of the Royal Statistical Society, 147(4), 468.

    Google Scholar 

  • Marr, D., & Hildreth, E. (1980). Theory of edge detection. Proceedings of the Royal Society of London. Series B, Biological Sciences , 207(1167), 187–217.

    Google Scholar 

  • Mendi, E. (2015). Image quality assessment metrics combining structural similarity and image fidelity with visual attention. Journal of Intelligent & Fuzzy Systems, 28(3), 1039–1046.

    Google Scholar 

  • Meyer-Bäse, A., Auer, D., & Wismueller, A. (2003). Topographic independent component analysis for fMRI signal detection. Proceedings of the International Joint Conference on Neural Networks, 1(7), 601–605.

    Google Scholar 

  • Mirny, L. A. (2011). The fractal globule as a model of chromatin architecture in the cell. Chromosome Research, 19(1), 37–51.

    Article  Google Scholar 

  • Mittal, A., Moorthy, A. K., & Bovik, A. C. (2012). No-reference image quality assessment in the spatial domain. IEEE Transactions on Image Processing, 21(12), 4695–4708.

    Article  MathSciNet  MATH  Google Scholar 

  • Miyabe, S., Juang, B. H., Saruwatari, H., & Shikano, K. (2009). Kernel-based nonlinear independent component analysis for underdetermined blind source separation. In IEEE International Conference on Acoustics, 1641–1644.

    Google Scholar 

  • Moorthy, A. K., & Bovik, A. C. (2009). Visual importance pooling for image quality assessment. IEEE Journal of Selected Topics in Signal Processing, 3(2), 193–201.

    Article  Google Scholar 

  • Moorthy, A. K., & Bovik, A. C. (2011). Blind image quality assessment: From natural scene statistics to perceptual quality. IEEE Transactions on Image Processing, 20(12), 3350–3364.

    Article  MathSciNet  MATH  Google Scholar 

  • Morrone, M. C., Ross, J., Burr, D. C., & Owens, R. (1986). Mach bands are phase dependent. Nature, 324(6049), 250–253.

    Article  Google Scholar 

  • Morrone, M. C., & Burr, D. C. (1988). Feature detection in human vision: A phase-dependent energy model. Proceedings of the Royal Society of London. Series B, Biological Sciences, 235(1280), 221–245.

    Google Scholar 

  • Murala, S., Maheshwari, R. P., & Balasubramanian, R. (2012). Local tetra patterns: A new feature descriptor for content-based image retrieval. IEEE Transactions on Image Processing, 21(5), 2874–2886.

    Article  MathSciNet  MATH  Google Scholar 

  • Najemnik, J., & Geisler, W. S. (2005). Optimal eye movement strategies in visual search. Nature, 434, 387–391.

    Article  Google Scholar 

  • Neil, G., & Curtis, K. M. (1997). Shape recognition using fractal dimension. Pattern Recognition, 30(12), 1957–1969.

    Article  Google Scholar 

  • Nielsen, F., Hyvrinen, A., Hurri, J., & Hoyer, P. O. (2009). Natural image statistics: A probabilistic approach to early computational vision. New York: Springer-Verlag.

    MATH  Google Scholar 

  • Ojala, T., Pietikäinen, M., & Harwood, D. (1996). A comparative study of texture measures with classification based on feature distributions. Pattern Recognition, 29(1), 51–59.

    Article  Google Scholar 

  • Ojala, T., Pietikainen, M., & Maenpaa, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), 971–987.

    Article  MATH  Google Scholar 

  • Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381(6583), 607–609.

    Article  Google Scholar 

  • Oszust, M. (2016). Full-reference image quality assessment with linear combination of genetically selected quality measures. PLoS ONE, 11(6), e0158333.

    Article  Google Scholar 

  • Peitgen, H. O., Jürgens, H., & Saupe, D. (2004). Chaos and fractals: New frontiers of science. Mathematical Gazette, 79(484), 241–255.

    MATH  Google Scholar 

  • Pentland, A. P. (1984). Fractal-based description of natural scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6), 661–674.

    Article  Google Scholar 

  • Privitera, C. M., & Stark, L. W. (2000). Algorithms for defining visual regions-of-interest: comparison with eye fixations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(9), 970–982.

    Article  Google Scholar 

  • Provata, A., & Katsaloulis, P. (2010). Hierarchical multifractal representation of symbolic sequences and application to human chromosomes. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 81(2 Pt 2), 026102.

    Article  Google Scholar 

  • Rajashekar, U., Cormack, L. K., & Bovik, A. C. (2003). Image features that draw fixations. Proceedings 2003 International Conference on Image Processing, Barcelona, Spain.

    Google Scholar 

  • Russell, D. A., Hanson, J. D., & Ott, E. (1980). Dimension of strange attractors. Physical Review Letters, 45(14), 1175–1178.

    Article  MathSciNet  Google Scholar 

  • Saad, M., Bovik, A. C., & Charrier, C. (2012). Blind image quality assessment: a natural scene statistics approach in the DCT domain. IEEE Transactions on Image Processing, 21(8), 3339–3352.

    Article  MathSciNet  MATH  Google Scholar 

  • Sampat, M. P., Wang, Z., Gupta, S., Bovik, A. C., & Markey, M. K. (2009). Complex wavelet structural similarity: A new image similarity index. IEEE Transactions on Image Processing, 18(11), 2385–2401.

    Article  MathSciNet  MATH  Google Scholar 

  • Sarker, N., & Chaudhuri, B. B. (1994). An efficient differential box-counting approach to compute fractal dimension of image. IEEE Transactions on Systems Man and Cybernetics, 24(1), 115–120.

    Article  Google Scholar 

  • Sheikh, H. R., & Bovik, A. C. (2006). Image information and visual quality. IEEE Transactions on Image Processing, 15(2), 430–444.

    Article  Google Scholar 

  • Sheikh, H. R., Bovik, A. C., & Cormack, L. (2005). No-reference quality assessment using natural scene statistics: JPEG2000. IEEE Transactions on Image Processing, 14(11), 1918–1927.

    Article  Google Scholar 

  • Simoncelli, E. P. (1997). Statistical models for images: compression, restoration and synthesis. Conference Record of the Asilomar Conference on Signals, Systems and Computers, 1, 673–678.

    Google Scholar 

  • Simoncelli, E. P., & Olshausen, B. A. (2001). Natural image statistics and neural representation. Annual Review of Neuroscience, 24(1), 1193–1216.

    Article  Google Scholar 

  • Srivastava, A., Lee, A. B., Simoncelli, E. P., & Zhu, S. C. (2003). On advances in statistical modeling of natural images. Journal of mathematical imaging and vision, 18(1), 17–33.

    Article  MathSciNet  MATH  Google Scholar 

  • Stosic, T., & Stosic, B. D. (2006). Multifractal analysis of human retinal vessels. IEEE Transactions on Medical Imaging, 25(8), 1101–1107.

    Article  MATH  Google Scholar 

  • Tan, X., & Triggs, B. (2010). Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Transactions on Image Processing, 19(6), 1635–1650.

    Article  MathSciNet  MATH  Google Scholar 

  • Wainwright, M. J., & Simoncelli, E. P. (1999). Scale mixtures of Gaussians and the statistics of natural images. Gayana, 68(2), 609–610.

    Google Scholar 

  • Wang, Z. (2001). Rate scalable Foveated image and video communications. Ph.D. Dissertation, Department of Electrical and Computer Engineering, University. Texas at Austin, Austin, TX.

    Google Scholar 

  • Wang, Z., & Bovik, A. C. (2002). A universal image quality index. IEEE Signal Processing Letters, 9(3), 81–84.

    Article  Google Scholar 

  • Wang, Z., & Bovik, A. C. (2006). Modern image quality assessment. Synthesis Lectures on Image, Video, and Multimedia Processing, 2(1), 1–156.

    Article  Google Scholar 

  • Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612.

    Article  Google Scholar 

  • Wang, L., & He, D.-C. (1990). Texture classification using texture spectrum. Pattern Recognition, 23(8), 905–910.

    Article  Google Scholar 

  • Wang, Z., & Li, Q. (2011). Information content weighting for perceptual image quality assessment. IEEE Transactions on Image Processing, 20(5), 1185–1198.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, W., Li, J., Huang, F., & Feng, H. (2008). Design and implementation of log-Gabor filter in fingerprint image enhancement. Pattern Recognition Letters, 29(3), 301–308.

    Article  Google Scholar 

  • Wang, Z., & Simoncelli, E. P. (2005). Reduced-reference image quality assessment using a wavelet-domain natural image statistic model. Proceedings of the SPIE, 5666, 149–159.

    Article  Google Scholar 

  • Wang, Z., Simoncelli, E. P., & Bovik, A. C. (2003). Multi-scale structural similarity for image quality assessment. Conference Record of the Asilomar Conference on Signals, Systems and Computers, 2, 1398–1402.

    Google Scholar 

  • Wei, X. & Li, C. (2010). Visual saliency detection based on topographic independent component analysis. Signal Processing (ICSP), 2010 IEEE 10th International Conference on, Beijing, 1244–1247.

    Google Scholar 

  • Wu, Q., Li, H., Meng, F., Ngan, K. N., Luo, B., Huang, C., et al. (2016). Blind image quality assessment based on multichannel feature fusion and label transfer. IEEE Transactions on Circuits and Systems for Video Technology, 26(3), 425–440.

    Article  Google Scholar 

  • Yan, Y. P., Du, S. L., Zhang, H. J., & Ma, Y. D. (2016). When spatial distribution unites with spatial contrast: An effective blind image quality assessment model. IET Image Processing, 10(12), 1017–1028.

    Article  Google Scholar 

  • Yu, L., Zhang, D., Wang, K., & Yang, W. (2005). Coarse iris classification using box-counting to estimate fractal dimensions. Pattern Recognition, 38(11), 1791–1798.

    Article  Google Scholar 

  • Yu, X., Hu, D., & Xu, J. (2014). Kernel independent component analysis. In Blind source separation: Theory and applications (pp. 145–152). Singapore: John Wiley and Sons.

    Google Scholar 

  • Yuan, F. N. (2014). Rotation and scale invariant local binary pattern based on high order directional derivatives for texture classification. Digital Signal Processing, 26(1), 142–152.

    Article  Google Scholar 

  • Yuan, J., Wang, D., & Cheriyadat, A. M. (2015). Factorization-based texture segmentation. IEEE Transactions on Image Processing, 24(11), 3488–3497.

    Article  MathSciNet  Google Scholar 

  • Zhang, Y., & Chandler, D. M. (2013). No-reference image quality assessment based on log-derivative statistics of natural scenes. Journal of Electronic Imaging, 22(4), 451–459.

    Google Scholar 

  • Zhang, H., Ding, Y., Wu, P. W., Bai, X. T., & Huang, K. (2014). Image quality assessment by quantifying discrepancies of multifractal spectrums. IEICE Transactions on Information and Systems, E, 97D(9), 2453–2460.

    Article  Google Scholar 

  • Zhang, D., Ding, Y., & Zheng, N. (2012). Nature science statistics approach based on ICA for no-reference image quality assessment. Procedia Engineering, 29(4), 3589–3593.

    Article  Google Scholar 

  • Zhang, H., Gao, W., Chen, X., & Zhao, D. (2005). Learning informative features for spatial histogram-based object detection. Proceedings IEEE International Joint Conference on Neural Networks, 3, 1806–1811.

    Google Scholar 

  • Zhang, B., Gao, Y., Zhao, S., & Liu, J. (2010). Local derivative pattern versus local binary pattern: Face recognition with high-order local pattern descriptor. IEEE Transactions on Image Processing, 19(2), 533–544.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, M., Mou, X., Fujita, H., Zhang, L., Zhou, X., & Xue, W. (2013a). Local binary pattern statistics feature for reduced reference image quality assessment. Proceedings of SPIE, 8660(3), 872–886.

    Google Scholar 

  • Zhang, M., Muramatsu, C., Zhou, X., Hara, T., & Fujita, H. (2015). Blind image quality assessment using the joint statistics of generalized local binary pattern. IEEE Signal Processing Letters, 22(2), 207–210.

    Article  Google Scholar 

  • Zhang, F., & Roysam, B. (2016). Blind quality metric for multidistortion images based on cartoon and texture decomposition. IEEE Signal Processing Letters, 23(9), 1265–1269.

    Article  Google Scholar 

  • Zhang, L., Zhang, L., Mou, X., & Zhang, D. (2011). FSIM: A feature similarity index for image quality assessment. IEEE Transactions on Image Processing, 20(8), 2378–2386.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, L., Tong M. H., Marks, T. K., Shan, H., & Cottrell, G. W. (2008). SUN: A Bayesian framework for saliency using natural statistics. Journal of Vision, 8(7):32, 1–20.

    Google Scholar 

  • Zhang, M., Xie, J., Zhou, X., & Fujita, H. (2013b). No reference image quality assessment based on local binary pattern statistics. 2013 Visual Communications and Image Processing (VCIP), Kuching, 1–6.

    Google Scholar 

  • Zhao, Y., Ding, Y., & Zhao, X. Y. (2016). Image quality assessment based on complementary local feature extraction and quantification. Electronics Letters, 52(22), 1849–1851.

    Article  Google Scholar 

  • Zhou, W. X. (2008). Multifractal detrended cross-correlation analysis for two nonstationary signals. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 77(6), 066211.

    Article  Google Scholar 

  • Zhou, W. J., Yu, L., Qiu, W. W., Zhou, Y., & Wu, M. W. (2017). Local gradient patterns (LGP): An effective local-statistical-feature extraction scheme for no-reference image quality assessment. Information Sciences, 397, 1–14.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Ding .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Zhejiang University Press, Hangzhou and Springer-Verlag GmbH Germany

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ding, Y. (2018). Image Quality Assessment Based on Natural Image Statistics. In: Visual Quality Assessment for Natural and Medical Image. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56497-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-56497-4_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-56495-0

  • Online ISBN: 978-3-662-56497-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics