Skip to main content

Human Visual System and Vision Modeling

  • Chapter
  • First Online:
Visual Quality Assessment for Natural and Medical Image
  • 852 Accesses

Abstract

The computational modeling of human visual system (HVS) is closely connected with image quality assessment (IQA) since visual signal quality is always finally evaluated by the former. Therefore, basic knowledge about HVS, especially its parts that are in charge of quality perception, should be aware of for studying IQA. This chapter gives a general introduction to the anatomy structure and the important properties of HVS. The anatomy structure gives a straightforward understanding upon HVS, including the hierarchical signal transmitting and processing flow and the responsibilities of each specific part. The properties of HVS are abstraction of this biological basis that is concluded to offer potential instructions for the design of objective IQA methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahumanda, A. (1996). Simplified vision models for image quality assessment. In SID International Symposium Digest of Technical Papers, 97-400.

    Google Scholar 

  • Alaei, A., Raveaux, R., & Conte, D. (2017). Image quality assessment based on regions of interest. Signal, Image and Video Processing, 11(4), 673–680.

    Article  Google Scholar 

  • Backus, B. T., Banks, M. S., van Ee, R., & Crowell, J. A. (1999). Horizontal and vertical disparity, eye position, and stereoscopic slant perception. Vision Research, 39(6), 1143–1170.

    Article  Google Scholar 

  • Budrikis, Z. L. (1972). Visual fidelity criterion and modeling. Proceedings of the IEEE, 60(7), 771–779.

    Google Scholar 

  • Campbell, F. W., & Robson, J. G. (1968). Application of Fourier analysis to the visibility of gratings. Journal of Physiology (London), 197(3), 551–566.

    Article  Google Scholar 

  • Chandler, D. M. (2013). Seven challenges in image quality assessment: Past, present, and future research. ISRN Signal Processing (pp. 1–53).

    Google Scholar 

  • Chen, M. J., Su, C. C., Kwon, D. K., Cormack, L. K., & Bovik, A. C. (2013). Full-reference quality assessment of stereopairs accounting for rivalry. Signal Processing: Image Communication, 28(9), 1143–1155.

    Google Scholar 

  • Chen, C., Zhang, X., Wang, Y., Zhou, T., & Fang, F. (2016). Neural activities in V1 create the bottom-up saliency map of natural scenes. Experimental Brain Research, 234(6), 1769–1780.

    Article  Google Scholar 

  • Conway, B. R. (2009). Color vision, cones, and color-coding in the cortex. The Neuroscientist, 15(3), 274–290.

    Article  Google Scholar 

  • Cormack, L. K. (2005). Computational models of early human vision. In Handbook of image and video processing (pp. 325–345).

    Google Scholar 

  • Daly, S. (1992). Visible difference predictor: An algorithm for the assessment of image fidelity. In Proceedings of SPIE (Vol. 1616, 2–15).

    Google Scholar 

  • Daubechies, I., & Sweldens, W. (1998). Factoring wavelet transforms into lifting steps. Journal of Fourier Analysis and Applications, 4(3), 245–267.

    Article  MathSciNet  MATH  Google Scholar 

  • De Valois, R. L., & De Valois, K. K. (1990). Spatial vision. New York: Oxford University Press.

    MATH  Google Scholar 

  • Ding, Y., Zhao, X., Zhang, Z., & Dai, H. (2017). Image quality assessment based on multi-order local features description, modeling and quantification. IEICE Transactions on Information and Systems, E100-D(6), 2453–2460.

    Google Scholar 

  • Felleman, D., & Essen, D. V. (1991). Distributed hierarchical processing in primate cerebral cortex. Cerebral Cortex, 1(1), 1–47.

    Article  Google Scholar 

  • Gao, X., Lu, W., Tao, D., & Li, X. (2009). Image quality assessment based on multiscale geometric analysis. IEEE Transactions on Image Processing, 18(7), 1409–1423.

    Article  MathSciNet  MATH  Google Scholar 

  • Garding, J., Porrill, J., Mayhew, J., & Frisby, J. (1995). Stereopsis, vertical disparity and relief transformations. Vision Research, 35(5), 703–722.

    Article  Google Scholar 

  • Geisler, W. S., & Banks, M. S. (1995). Visual performance. New York: McGraw-Hill Book Company.

    Google Scholar 

  • Goferman, S., Zelnik-Manor, L., & Tal, A. (2012). Context-aware saliency detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(10), 1915–1926.

    Article  Google Scholar 

  • Gollisch, T., & Meister, M. (2010). Eye smarter than scientists believed: Neural computations in circuits of the retina. Neuron, 65(2), 150–164.

    Article  Google Scholar 

  • Graham, N. (1989). Visual pattern analyzers. New York: Oxford University Press.

    Book  Google Scholar 

  • Gu, K., Zhai, G., Yang, X., & Zhang, W. (2015). Using free energy principle for blind image quality assessment. IEEE Transactions on Multimedia, 17(1), 50–63.

    Article  Google Scholar 

  • Hecht, S. (1924). The visual discrimination of intensity and the Weber-Fechner law. Journal General Physiology, 7(2), 235–267.

    Article  Google Scholar 

  • Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(11), 1254–1259.

    Google Scholar 

  • Itti, L., & Koch, C. (2000). A saliency-based mechanism for overt and convert shifts of visual attention. Vision Research, 40, 1489–1506.

    Google Scholar 

  • Jones, P. W., Daly, S. J., Gaborski, R. S., & Rabbani, M. (1995). Comparative study of wavelet and discrete cosine transform (DCT) decompositions with equivalent quantization and encoding strategies for medical images. In Proceedings of SPIE Medical Imaging (Vol. 2431, pp. 571–582).

    Google Scholar 

  • Jones, J. P., & Palmer, L. A. (1987). An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. Journal of Neurophysiology, 58(6), 1233–1258.

    Article  Google Scholar 

  • Kadir, T., & Brady, M. (2001). Saliency, scale and image description. International Journal of Computer Vision, 45(2), 83–105.

    Article  MATH  Google Scholar 

  • Kaplan, I. T., & Metlay, W. (1964). Light intensity and binocular rivalry. Journal of Experimental Psychology, 67(1), 22–26.

    Article  Google Scholar 

  • Koch, C., & Poggio, T. (1999). Predicting the visual world: silence is golden. Nature Neuroscience, 2(1), 9–10.

    Article  Google Scholar 

  • Koffka, K. (1955). Principles of gestalt psychology. Routledge & Kegan Paul Ltd.

    Google Scholar 

  • Kottayil, N. K., Cheng, I., Dufaux, F., & Basu, A. (2016). A color intensity invariant low-level feature optimization framework for image quality assessment. Signal, Image and Video Processing, 10(6), 1169–1176.

    Article  Google Scholar 

  • Kruger, N., Janssen, P., Kalkan, S., Lappe, M., Leonardis, A., & Piater, J. (2013). Deep hierarchies in the primate visual cortex: What can we learn for computer vision? IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1847–1871.

    Article  Google Scholar 

  • Kuffler, S. W. (1953). Discharge patterns and functional organization of mammalian retina. Journal of Neurophysiology, 16(1), 37–68.

    Article  Google Scholar 

  • Legge, G. E., & John, M. F. (1980). Contrast masking in human vision. Journal of the Optical Society of America, 70(12), 1458–1471.

    Article  Google Scholar 

  • Levin, A., & Weiss, Y. (2009). Learning to combine bottom-up and top-down segmentation. International Journal of Computer Vision, 81(1), 105–118.

    Article  Google Scholar 

  • Li, Z. (2002). A saliency map in primary visual cortex. Trends in Cognitive Sciences, 6(1), 9–16.

    Article  Google Scholar 

  • Lin, W., Dong, L. & Xue, P. (2003). Discriminative analysis of pixel difference towards picture quality prediction. In Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429), (Vol. 2, No. 3, pp. 193–196).

    Google Scholar 

  • Lin, W., & Kuo, C.-C. J. (2011). Perceptual visual quality metrics: A survey. Journal of Visual Communication and Image Representation, 22(4), 297–312.

    Article  Google Scholar 

  • Lubin, J. (1993). The use of psychophysical data and models in the analysis of display system performance. In A. B. Watson (Ed.), Digital images and human vision (pp. 163–178). Cambridge: MIT Press.

    Google Scholar 

  • Lubin, J. (1995). Avisual discrimination mode for image system design and evaluation. Visual Models for Target Detection and Recognition (pp. 207–220). Singapore: World Scientific Publishers.

    Google Scholar 

  • Mannos, J. L., & Sakrison, D. J. (1974). The effects of a visual fidelity criterion on the encoding of images. IEEE Transactions on Information Theory, 20(4), 525–536.

    Article  MATH  Google Scholar 

  • Masland, R. H. (2012). The neuronal organization of the retina. Neuron, 76(2), 266–280.

    Article  Google Scholar 

  • Min, X., Zhai, G., Gao, Z., & Gu, K. (2014). Visual attention data for image quality assessment databases. In 2014 IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 894–897), Melbourne VIC.

    Google Scholar 

  • Moorthy, A. K., Wang, Z., & Bovik, A. C. (2011). Visual perception and quality assessment. In G. Cristobal, P. Schelkens, & H. Thienpont (Eds.), Optical and digital image processing. Weinheim: Wiley Publisher.

    Google Scholar 

  • Navalpakkam, V., Koch, C., Rangel, A., Perona, P., & Treisman, A. (2010). Optimal reward harvesting in complex perceptual environments. Proceedings of the National Academy of Sciences of the United States of America, 107(11), 5232–5237.

    Google Scholar 

  • Nawrot, M. (2003). Depth from motion parallax scales with eye movement gain. Journal of Vision, 3(11), 841–851.

    Article  Google Scholar 

  • Oliva A. (2005). Gist of the scene. Neurobiology of Attention, 251–256.

    Google Scholar 

  • Orban, G. A. (2008). Higher order visual processing in macaque extrastriate cortex. Physiological Reviews, 88(1), 59–89.

    Article  Google Scholar 

  • Ouria, D. B., Rieux, C., Hut, R. A., & Cooper, H. M. (2006). Immunohistochemical evidence of a melanopsin cone in human retina. Investigative Ophthalmology & Visual Science, 47(4), 1636–1641.

    Article  Google Scholar 

  • Poggio, G., & Poggio, T. (1984). The analysis of stereopsis. Annual Review of Neuroscience, 7(1), 379–412.

    Article  Google Scholar 

  • Saha, A., & Wu, Q. M. J. (2016). Full-reference image quality assessment by combining global and local distortion measures. Signal Processing, 128, 186–197.

    Article  Google Scholar 

  • Sakrison, D., & Algazi, V. (1971). Comparison of line-by-line and two-dimensional encoding of random images. IEEE Transactions on Information Theory, 17(4), 386–398.

    Article  MathSciNet  MATH  Google Scholar 

  • Schade, O. H. (1956). Optical and photoelectric analog of the eye. Journal of the Optical Society of America, 46(9), 721–739.

    Article  Google Scholar 

  • Schreiber, W. F. (1986). Fundamentals of electronic imaging systems. Berlin: Springer.

    Book  Google Scholar 

  • Shao, F., Lin, W., Gu, S., Jiang, G., & Srikanthan, T. (2013). Perceptual full-reference quality assessment of stereoscopic images by considering binocular visual characteristics. IEEE Transactions on Image Processing, 22(5), 1940–1953.

    Article  MathSciNet  MATH  Google Scholar 

  • Shapley, R., & Hawken, M. J. (2011). Color in the cortex: Single- and double-opponent cells. Vision Research, 51(7), 701–717.

    Article  Google Scholar 

  • Shen, D., & Wang, S. (1996). Measurements of JND property of HVS and its applications to image segmentation, coding and requantization. In Proceedings of SPIE (Vol. 2952, pp. 113–121).

    Google Scholar 

  • Stockham, T. G. (1972). Image processing in the context of a visual model. Proceedings of the IEEE, 60(7), 828–842.

    Google Scholar 

  • Tatler, B. W., Wade, N. J., Kwan, H., Findlay, J. M., & Velichkovsky, B. M. (2010). Yarbus, eye movements, and vision. I-Perception, 1(1), 7–27.

    Article  Google Scholar 

  • Taylor, C., Pizlo, Z., Allebach, J. P., & Bouman, C. A. (1997). Image quality assessment with a Gabor pyramid model of the human visual system. In Proceeding of SPIE (Vol. 3016, pp. 58–69).

    Google Scholar 

  • Tong, Y. B., Konik, H., Cheikh, F. A., & Tremeau, A. (2010). Full reference image quality assessment based on saliency map analysis. Journal of Imaging Science and Technology, 54(3), 305031–305034.

    Article  Google Scholar 

  • Treisman, A., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97–136.

    Article  Google Scholar 

  • Vu, C. T., Larson, E. C., & Chandler, D. M. (2008). Visual fixation patterns when judging image quality: Effects of distortion type, amount, and subject experience. In Proceedings of the IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI ’08) (pp. 73–76).

    Google Scholar 

  • Wandell, B. A. (1995). Foundations of vision. Sinauer Associates, Inc.

    Google Scholar 

  • Wang, Z., & Bovik, A. C. (2006). Modern image quality assessment. Synthesis Lectures on Image, Video, and Multimedia Processing, 2(1), 1–156.

    Article  Google Scholar 

  • Watson, A. B. (1993). DC Tune: A technique for visual optimization of DCT quantization matrices for individual images. In Society for Information Display Digest of Technical Papers (Vol. XXIV, 946–949).

    Google Scholar 

  • Watson, A. B., & Ahumanda, A. (2005). A standard model for foveal detection of spatial contrast. Journal of Vision, 5(9), 717–740.

    Article  Google Scholar 

  • Watson, A. B., Hu, J., & McGowan, J. F., III. (2001). DVQ: A digital video quality metric based on human vision. Journal of Electronic Imaging, 10(1), 20–29.

    Article  Google Scholar 

  • Watson, A. B., Yang, G. Y., Solomon, J. A., & Villasenor, J. (1997). Visibility of wavelet quantization noise. IEEE Transactions on Image Processing, 6(8), 1164–1175.

    Article  Google Scholar 

  • Wilson, H. R., & Regan, D. (1984). Spatial frequency adaptation and grating discrimination: Predictions of a line element model. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1(11), 1091–1096.

    Article  Google Scholar 

  • Winkler, S. (1999). A perceptual distortion metric for digital color video. In Proceedings of SPIE (Vol. 3644, 175–184).

    Google Scholar 

  • Wolfe, J. (1994). Guided search 2.0: A revised model of visual search. Psychonomic Bulletin & Review, 1(2), 202–238.

    Article  Google Scholar 

  • Wu, J., Lin, W., Shi, G., & Liu, A. (2013). Perceptual quality metric with internal generative mechanism. IEEE Transactions on Image Processing, 22(1), 43–54.

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, H. R., & Rao, K. R. (2006). Digital video image quality and perceptual coding. Taylor & Francis.

    Google Scholar 

  • Xue, W., Zhang, L., Mou, X., & Bovik, A. C. (2014). Gradient magnitude similarity deviation: A highly efficient perceptual image quality index. IEEE Transactions on Image Processing, 23(2), 684–695.

    Article  MathSciNet  MATH  Google Scholar 

  • Yamada, K., & Cottrell, G. W. (1995). A model of scan paths applied to face recognition. In Proceedings of the 17th Annual Conference of the Cognitive Science Society (pp. 55–60).

    Google Scholar 

  • Zeng, W., Daly, S., & Lei, S. (2002). An overview of the visual optimization tools in JPEG 2000. Signal Processing: Image Communication, 17(1), 85–104.

    Google Scholar 

  • Zhang, L., Shen, Y., & Li, H. (2014). VSI: A visual saliency-induced index for perceptual image quality assessment. IEEE Transactions on Image Processing, 23(10), 4270–4281.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, L., Tong, M. H., Marks, T. K., Shan, H., & Cottrell, G. W. (2008). SUN: A bayesian framework for saliency using natural statistics. Journal of Vision, 8(7), 32.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Ding .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Zhejiang University Press, Hangzhou and Springer-Verlag GmbH Germany

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ding, Y. (2018). Human Visual System and Vision Modeling. In: Visual Quality Assessment for Natural and Medical Image. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56497-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-56497-4_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-56495-0

  • Online ISBN: 978-3-662-56497-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics