Skip to main content

Kühltechniken

  • Chapter
Book cover Energie für die Haut
  • 1335 Accesses

Zusammenfassung

Kühlverfahren in der dermatologischen Lasertherapie ermöglichen Analgesie und Protektion der Epidermis. Es werden Kontaktkühlverfahren und kontaktlose Kühlverfahren unterschieden. Als Kühlmittel werden Flüssigkeiten, Festkörper und Gase verwendet. Die Auswirkungen von additiven Kühlverfahren auf die Clearance sind Gegenstand aktueller Forschungen. Um diese Aspekte dreht sich das vorliegende Kapitel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 149.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Adrian RM (1995) Cutaneous cooling facilitated high fluence pulsed dye laser therapy of port wine stains. Lasers Surg Med 6:76

    Google Scholar 

  • Adrian RM, Tanghetti EA (1998) Long pulse 532-nm laser treatment of facial telangiectasia. Dermatol Surg 24: 1-4

    Article  CAS  Google Scholar 

  • Altshuler GB, Zenzie HH, Erofeev AV, Smirnov MZ, Anderson RR, Dierickx C (1999) Contact cooling of the skin. Phys Med Biol 44:1003-1023

    Article  CAS  Google Scholar 

  • Berlien HP, Waldschmidt J, Müller G (1987) Laser treatment of cutan and deep vessel anomalies. In: Waidelich W, Waidelich R (eds.) Laser 87 – Optoelectronics in medicine. Berlin, Heidelberg, New York: Springer:526-528

    Chapter  Google Scholar 

  • Biesman BS, Chang D, Richards S, Reinisch L (2002) A comparison of cold air vs. a thermoelectrically cooled sapphire window for epidermal protection. Lasers Surg Med (Suppl. 14): 36

    Google Scholar 

  • Chang CJ, Kelly KM, Nelson JS (2001) Cryogen spray cooling and pulsed dye laser treatment of cutaneous hemangiomas. Ann Plast Surg 46:577-583

    Article  CAS  Google Scholar 

  • Chess C, Chess Q (1993) Cool laser optics treatment of large teleangiectasia of the lower extremities. J Dermatol Surg Oncol 19:74-80

    Article  CAS  Google Scholar 

  • Gilchrest BA, Rosen S, Noe JM (1982) Chilling port wine stains improves the response to argon laser therapy. J Plast Reconstr Surg 69:278-283

    Article  CAS  Google Scholar 

  • Greve B, Hammes S, Raulin C (2001) The effect of cold air cooling on 585 nm pulsed dye laser treatment of port-wine stains. Dermatol Surg 27: 633-636

    CAS  PubMed  Google Scholar 

  • Hammes S, Raulin C (2005) Evaluation of different temperatures in cold air cooling with pulsed-dye laser treatment of facial telangiectasia. Lasers Surg Med 36(2):136-140

    Article  Google Scholar 

  • Hammes S, Roos S, Raulin C, Ockenfels HM, Greve B (2007) Does dye laser treatment with higher fluences in combination with cold air cooling improve the results of port-wine stains? J Eur Acad Dermatol Venereol 21(9):1229-33

    Google Scholar 

  • Hirsch RJ, Farinelli WA, Anderson RR (2002) A closer look at dynamic cooling. Lasers Surg Med (Suppl. 14): 36

    Google Scholar 

  • Kauvar AN, Frew KE, Friedman PM, Geronemus RG (2002) Cooling gel improves pulsed KTP laser treatment of facial telangiectasia. Lasers Surg Med 30:149-153

    Article  Google Scholar 

  • Kelly KM, Nanda VS, Nelson JS (2002) Treatment of port-wine stain birthmarks using the 1.5-msec pulsed dye laser at high fluences in conjunction with cryogen spray cooling. Dermatol Surg 28: 309-313

    PubMed  Google Scholar 

  • Kelly KM, Nelson JS, Lask GP, Geronemus RG, Bernstein LJ (1999) Cryogen spray cooling in combination with nonablative laser treatment of facial wrinkles. Arch Dermatol 135:691-694

    Google Scholar 

  • Knollmann BC, Berliner M (1990) Vergleichende Untersuchung zur Wirkung von drei verschiedenen Formen der Cryotherapie (Cryogelbeutel, Kaltluft und kalter Stickstoff) auf Hauttemperatur und Hautdurchblutung gesunder Probanden. Z Phys Med Baln Med Klim 19:225

    Google Scholar 

  • Kröling P, Mühlbauer M (1992) Einfluß von Eisbeutel, Kaltluft und N2-Kaltgas auf die gelenknahe elektrische Schmerzschwelle. Phys Rehab Kur Med 2:1-6

    Article  Google Scholar 

  • Majaron B, Kelly KM, Park HB, Verkruysse W, Nelson JS (2001) Er:YAG laser skin resurfacing using repetitive long-pulse exposure and cryogen spray cooling: I. Histological study. Lasers Surg Med 28:121-30

    Article  CAS  Google Scholar 

  • Majaron B, Kimel S, Verkruysse W, Aguilar G, Pope K, Svaasand LO, Lavernia EJ, Nelson JS (2001) Cryogen spray cooling in laser dermatology: effects of ambient humidity and frost formation. Lasers Surg Med 28:469-476

    Article  CAS  Google Scholar 

  • Nelson JS, Milner TE, Anvari B, Tanenbaum BS, Kimel S, Svaasand LO, Jacques SL (1995) Dynamic epidermal cooling during pulsed laser treatment of port wine stains. Arch Dermatol 131:695-700

    Google Scholar 

  • Ott KD (1991) Kaltlufttherapie. Physiotherapie 82:231-232

    Google Scholar 

  • Pfefer TJ, Smithies DJ, Milner TE, van Gemert MJC, Nelson JS, Welch AJ (2000) Bioheat transfer analysis of cryogen spray cooling during laser treatment of port wine stains. Lasers Surg Med 26:145-57

    Article  CAS  Google Scholar 

  • Raulin C, Grema H (2004). Single-pass carbon dioxide laser skin resurfacing combined with cold-air cooling: efficacy and patient satisfaction of a prospective side-by-side study. Arch Dermatol 140(11):1333-1336

    Google Scholar 

  • Raulin C, Greve B (2003) Laser und IPL-Technologie in der Dermatologie und Ästhetischen Medizin. Schattauer, Stuttgart, New York

    Google Scholar 

  • Raulin C, Greve B, Hammes S (2000) Cold air in laser therapy: First experiences with a new cooling system. Lasers Surg Med 27:404-410

    Article  CAS  Google Scholar 

  • Raulin C, Karsai S (2013). Lasertherapie der Haut. Springer Heidelberg

    Google Scholar 

  • Tiel H, Drosner M, Hebel T, Raulin C (1998) New cooling technique for pulsed lasers or intensive light sources. Lasers Surg Med 22(suppl. 10):77

    Google Scholar 

  • Torres JH, Tunnell JW, Pikkula BM, Anvari B (2001) An analysis of heat removal during cryogen spray cooling and effects of simultaneous airflow application. Lasers Surg Med 28:477-486

    Article  CAS  Google Scholar 

  • Waldorf HA, Alster TS, McMillan K, Kauvar AB, Geronemus RG, Nelson JS (1997) Effect of dynamic cooling on 585-nm pulsed dye laser treatment of port wine stain birthmarks. Dermatol Surg 23: 657-662

    Article  CAS  Google Scholar 

  • Werner JA, Lippert BM, Godbersen GS, Rudert H (1992) Die Hämangiombehandlung mit dem Neodym:Yttrium-Aluminium-Granat-Laser (Nd:YAG-Laser). Laryngo Rhino Otol 71:388-395

    Article  CAS  Google Scholar 

  • Werner JA, Lippert BM, Hoffmann P, Rudert H (1995) Nd:YAG laser therapy of voluminous hemangiomas and vascular malformations. Adv Otorhinolaryngol 49:75-80

    Google Scholar 

  • Zenzie HH, Altshuler GB, Smirnov MZ, Anderson RR (2000) Evaluation of cooling methods for laser dermatology. Lasers Surg Med 26:130-134

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Cite this chapter

Hammes, S. (2018). Kühltechniken. In: Kautz, G. (eds) Energie für die Haut. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56436-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-56436-3_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-56435-6

  • Online ISBN: 978-3-662-56436-3

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics