Nanostructured Materials for Advanced Energy Conversion and Storage Devices: Safety Implications at End-of-Life Disposal

  • Sajid Bashir
  • Pranitha Hanumandla
  • Hsuan-Yi Huang
  • Jingbo Louise Liu


The global demand for electricity has gradually increased to 20,000 TWh in 2016 at approximately 2% per decade. The top four resources to generate electricity are coal, natural gas, nuclear, and renewables. In the USA, natural gas has displaced coal as the primary source for the generation of electricity. In the transport sector, fossil fuels dominate. The two major drawbacks of using fossil fuels for energy and transport are the harmful emission of oxides of carbon, nitrogen, and sulfur and the limited availability of these resources if measured in centuries rather than years. To offset these short- and long-term problems, researchers have proposed the development of fuel cells (FCs) as a potential solution. The FCs convert fuels (such as hydrogen) into water and electricity with zero or near-zero emission of harmful gases. Hydrogen is generated using either water splitting or steam reformation of methane, coal gasification, or from methanol. The above alternative solutions require chemical and electrical energy and are not necessarily carbon dioxide neutral. To improve the efficiency and lower the cost of the fuel cell stack, researchers have focused on replacement of platinum anode/cathodes with other non-precious metals. Their potential toxicity and interactions with the environment, animals, and people have received little attention, unlike our understanding of the toxicity of gasoline volatiles, particulate matter, and organic residues. In this study, we evaluated the potential biological effects using core-shelled Fe3O4 magnetic nanoparticles (MNPs) as an example. The toxicity results indicate that electrocatalyst with appropriate structural support may be biologically benign. The toxicity of these catalysts may be an issue in the near future since the number of electric and hydrogen-powered automobiles with fuel cells is expected to increase. This increased utilization will lower consumption of fossil fuels, as well as emission of greenhouses gases, but will increase a secondary risk of the effects of these electrocatalysts. Our results demonstrate the minimization of oxidative stress and cellular damage if encapsulated with natural product extracts.


World energy demand Fuel cells Nanoparticles Metal oxide Toxicity Nitric oxide Policy 



The authors wish to thank the College of Arts & Sciences (CoA&S, Dr. Bashir, 160336-00002), ACS-PRF (Liu, 53827-UR10), Summer Faculty Fellowship Program (Bashir), Welch Departmental Grant (AC-0006), NSF-MRI acquisition (Liu), University Research Awards (160315-00015, Liu), and RDF grants (160345-00005, Liu) at Texas A&M University-Kingsville (TAMUK) for funding and student support respectfully. The Microscopy and Imaging Center (MIC) at TAMU and the Department of Chemistry at TAMUK are also duly acknowledged for their technical support and nanostructure characterization. The Welch Foundation (AC-006) is further acknowledged in providing financial support to graduate students in their studies. Dr. Bashir would also like to acknowledge Dr. Wigle for access to the Triservice Laboratory (Fort Sam Houston, Air Force, EPA-07-029-HE-00-EPA) and assistance with in vitro cell assays. The Materials Characterization Facility and Microscopy Imaging Center, TAMU, and technical support from TAMUK were acknowledged; Dr. Ying-Pin Chen from Zhou’s group, Chemistry Department, TAMU, is duly acknowledged for her assistance with XRD and SEM data collection and analyses; and Drs. H. Kim and Wilson Serem, Texas A&M University, for assistance with other analyses are also acknowledged.


  1. 1.
    R. G. Newell, Y. Qian, D. Raimi, Global energy outlook 2015 (No. w22075). National Bureau of Economic Research. (2016),
  2. 2.
  3. 3.
    I. Chapman, The end of peak oil? Why this topic is still relevant despite recent denials. Energ. Policy 64, 93–101 (2014)CrossRefGoogle Scholar
  4. 4.
    N. Bauer, I. Mouratiadou, G. Luderer, L. Baumstark, R.J. Brecha, O. Edenhofer, E. Kriegler, Global fossil energy markets and climate change mitigation–an analysis with REMIND. Clim. Chang. 136(1), 69–82 (2016)CrossRefGoogle Scholar
  5. 5.
    C. Li, H. Shi, Y. Cao, J. Wang, Y. Kuang, Y. Tan, J. Wei, A comprehensive review of renewable energy curtailment and avoidance: a specific example in China. Renew. Sust. Energ. Rev. 41, 1067–1079 (2015)CrossRefGoogle Scholar
  6. 6.
  7. 7.
    A. Cherp, J. Jewell, V. Vinichenko, N. Bauer, E. De Cian, Global energy security under different climate policies, GDP growth rates, and fossil resource availabilities. Clim. Chang. 136(1), 83–94 (2016)CrossRefGoogle Scholar
  8. 8.
    V. Court, F. Fizaine, Long-term estimates of the Energy-Return-on-Investment (EROI) of coal, oil, and gas global productions. Ecol. Econ. 138, 145–159 (2017)CrossRefGoogle Scholar
  9. 9.
    S.M. Chin, H.L. Hwang, D. Davidson, Shared Freight Transportation and Energy Commodities Phase One: Coal, Crude Petroleum, and Natural Gas Flows (No. ORNL/TM-2016/303) (Oak Ridge National Laboratory (ORNL), Oak Ridge, 2016),
  10. 10.
    D.L. McCollum, J. Jewell, V. Krey, M. Bazilian, M. Fay, K. Riahi, Quantifying uncertainties influencing the long-term impacts of oil prices on energy markets and carbon emissions. Nat. Energy 1, e16077 (18 pages) (2016),
  11. 11.
    Y. Niki, D. H. Yoo, K. Hirata, H. Sekiguchi, Effects of Ammonia Gas Mixed Into Intake Air on Combustion and Emissions Characteristics in Diesel Engine. In ASME 2016 Internal Combustion Engine Fall Technical Conference (pp. V001T03A004-V001T03A004). (American Society of Mechanical Engineers, 2016),
  12. 12.
    A. Karvountzis-Kontakiotis, A. Dimaratos, L. Ntziachristos, Z. Samaras, Exploring the stochastic and deterministic aspects of cyclic emission variability on a high-speed spark-ignition engine. Energy 118, 68–76 (2017)CrossRefGoogle Scholar
  13. 13.
    M.K. Balki, C. Sayin, M. Canakci, The effect of different alcohol fuels on the performance, emission and combustion characteristics of a gasoline engine. Fuel 115, 901–906 (2014)CrossRefGoogle Scholar
  14. 14.
    O. Popovicheva, G. Engling, K.T. Lin, N. Persiantseva, M. Timofeev, E. Kireeva, G. Wachtmeister, Diesel/biofuel exhaust particles from modern internal combustion engines: microstructure, composition, and hygroscopicity. Fuel 157, 232–239 (2015)CrossRefGoogle Scholar
  15. 15.
    E. Mattarelli, C.A. Rinaldini, V.I. Golovitchev, CFD-3D analysis of a light duty dual fuel (diesel/natural gas) combustion engine. Energy Procedia 45, 929–937 (2014)CrossRefGoogle Scholar
  16. 16.
    J.J. Schauer, Design criteria for future fuels and related power systems addressing the impacts of non-CO2 pollutants on human health and climate change. Ann. Rev. Chem. Biomol. Eng. 6, 101–120 (2015)CrossRefGoogle Scholar
  17. 17.
    J.L. Vieira, G.V. Guimaraes, P.A. de Andre, F.D. Cruz, P.H.N. Saldiva, E.A. Bocchi, The respiratory filter reduces the cardiovascular effects associated with diesel exhaust exposure: a randomized, prospective, double-blind, controlled study of heart failure: the FILTER-HF trial. JACC Heart Fail. 4(1), 55–64 (2016)CrossRefGoogle Scholar
  18. 18.
    K. Berhane, Y. Zhang, M.T. Salam, S.P. Eckel, W.S. Linn, E.B. Rappaport, F.D. Gilliland, Longitudinal effects of air pollution on exhaled nitric oxide: the children’s health study. Occup. Environ. Med. 71(7), 507–513 (2014)CrossRefGoogle Scholar
  19. 19.
    F. Christodoulou, A. Megaritis, Experimental investigation of the effects of simultaneous hydrogen and nitrogen addition on the emissions and combustion of a diesel engine. Int. J. Hydrog. Energy 39(6), 2692–2702 (2014)CrossRefGoogle Scholar
  20. 20.
    M. Tinajero-Trejo, K.J. Denby, S.E. Sedelnikova, S.A. Hassoubah, B.E. Mann, R.K. Poole, Carbon monoxide-releasing Molecule-3 (CORM-3; Ru (CO) 3Cl (Glycinate)) as a tool to study the concerted effects of carbon monoxide and nitric oxide on bacterial Flavohemoglobin Hmp applications and pitfalls. J. Biol. Chem. 289(43), 29471–29482 (2014)CrossRefGoogle Scholar
  21. 21.
    K.H. Kim, S.A. Jahan, E. Kabir, R.J. Brown, A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ. Int. 60, 71–80 (2013)CrossRefGoogle Scholar
  22. 22.
    L.B. Braga, J.L. Silveira, M.E. da Silva, E.B. Machin, D.T. Pedroso, C.E. Tuna, Comparative analysis of a PEM fuel cell and an internal combustion engine driving an electricity generator: technical, economical and ecological aspects. Appl. Therm. Eng. 63(1), 354–361 (2014)CrossRefGoogle Scholar
  23. 23.
    L.E. Arteaga-Pérez, Y. Casas-Ledón, W. Prins, L. Radovic, Thermodynamic predictions of performance of a bagasse integrated gasification combined cycle under quasi-equilibrium conditions. Chem. Eng. J 258, 402–411 (2014)CrossRefGoogle Scholar
  24. 24.
    S. Verhelst, Recent progress in the use of hydrogen as a fuel for internal combustion engines. Int. J. Hydrog. Energy 39(2), 1071–1085 (2014)CrossRefGoogle Scholar
  25. 25.
    M.K. Debe, Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486(7401), 43-1–43-10 (2012),
  26. 26.
    H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B Environ. 56(1), 9–35 (2005)CrossRefGoogle Scholar
  27. 27.
    Y. Yuan, J. Smith, G. Goenaga, D.J. Liu, B. Zhou, J. Liu, Performance improvement of fuel cells using platinum-functionalised aligned carbon nanotubes. J. Exp. Nanosci. 8(6), 797–807 (2013)CrossRefGoogle Scholar
  28. 28.
    J. Liu, Y. Yuan, S. Bashir, Functionalization of aligned carbon nanotubes to enhance the performance of fuel cell. Energies 6(12), 6476–6486 (2013)CrossRefGoogle Scholar
  29. 29.
    K. Suárez-Alcántara, O. Solorza-Feria, Kinetics and PEMFC performance of Ru x Mo y Se z nanoparticles as a cathode catalyst. Electrochim. Acta 53(15), 4981–4989 (2008)CrossRefGoogle Scholar
  30. 30.
    L.G.S. Pereira, F.R. dos Santos, M.E. Pereira, V.A. Paganin, E.A. Ticianelli, CO tolerance effects of tungsten-based PEMFC anodes. Electrochim. Acta 51(19), 4061–4066 (2006)CrossRefGoogle Scholar
  31. 31.
    J. Parrondo, F. Mijangos, B. Rambabu, Platinum/tin oxide/carbon cathode catalyst for high-temperature PEM fuel cell. J. Power Sources 195(13), 3977–3983 (2010)CrossRefGoogle Scholar
  32. 32.
    B.P. Vinayan, R. Nagar, N. Rajalakshmi, S. Ramaprabhu, Novel platinum–cobalt alloy nanoparticles dispersed on nitrogen-doped graphene as a cathode electrocatalyst for PEMFC applications. Adv. Funct. Mater. 22(16), 3519–3526 (2012)CrossRefGoogle Scholar
  33. 33.
    E. Slavcheva, I. Radev, S. Bliznakov, G. Topalov, P. Andreev, E. Budevski, Sputtered iridium oxide films as electrocatalysts for water splitting via PEM electrolysis. Electrochim. Acta 52(12), 3889–3894 (2007)CrossRefGoogle Scholar
  34. 34.
    I. Roche, E. Chaînet, M. Chatenet, J. Vondrák, Carbon-supported manganese oxide nanoparticles as electrocatalysts for the oxygen reduction reaction (ORR) in alkaline medium: physical characterizations and ORR mechanism. J. Phys. Chem. C 111(3), 1434–1443 (2007)CrossRefGoogle Scholar
  35. 35.
    A. Serov, C. Kwak, Review of non-platinum anode catalysts for DMFC and PEMFC application. Appl. Catal. B Environ. 90(3), 313–320 (2009)CrossRefGoogle Scholar
  36. 36.
    L. Dai, Y. Xue, L. Qu, H.J. Choi, J.B. Baek, Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 115(11), 4823–4892 (2015)CrossRefGoogle Scholar
  37. 37.
    Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Design of electrocatalysts for oxygen-and hydrogen-involving energy conversion reactions. Chem. Soc. Rev 44(8), 2060–2086 (2015)CrossRefGoogle Scholar
  38. 38.
    H. Liu, C. Song, L. Zhang, J. Zhang, H. Wang, D.P. Wilkinson, A review of anode catalysis in the direct methanol fuel cell. J. Power Sources 155(2), 95–110 (2006)CrossRefGoogle Scholar
  39. 39.
    R. Bashyam, P. Zelenay, A class of non-precious metal composite catalysts for fuel cells. Nature 443(7107), 63–66 (2006)CrossRefGoogle Scholar
  40. 40.
    C.T. Hsieh, J.Y. Lin, Fabrication of bimetallic Pt–M (M= Fe, Co, and Ni) nanoparticle/carbon nanotube electrocatalysts for direct methanol fuel cells. J. Power Sources 188(2), 347–352 (2009)CrossRefGoogle Scholar
  41. 41.
    S.Y. Huang, P. Ganesan, S. Park, B.N. Popov, Development of a titanium dioxide supported platinum catalyst with ultrahigh stability for polymer electrolyte membrane fuel cell applications. J. Am. Chem. Soc. 131(39), 13898–13899 (2009)CrossRefGoogle Scholar
  42. 42.
    E.P. Murray, T. Tsai, S.A. Barnett, A direct- methane fuel cell with a ceria-based anode. Nature 400(6745), 649-1–649-4 (1999), CrossRefGoogle Scholar
  43. 43.
    J. Graetz, New approaches to hydrogen storage. Chem. Soc. Rev. 38(1), 73–82 (2009)CrossRefGoogle Scholar
  44. 44.
    D.R. Palo, R.A. Dagle, J.D. Holladay, Methanol steam reforming for hydrogen production. Chem. Rev. 107(10), 3992–4021 (2007)CrossRefGoogle Scholar
  45. 45.
    K. Vasudeva, N. Mitra, P. Umasankar, S.C. Dhingra, Steam reforming of ethanol for hydrogen production: thermodynamic analysis. Int. J. Hydrog. Energy 21(1), 13–18 (1996)CrossRefGoogle Scholar
  46. 46.
    J.A. Turner, Sustainable hydrogen production. Science 305(5686), 972–974 (2004)CrossRefGoogle Scholar
  47. 47.
    T.R. Tephly, The toxicity of methanol. Life Sci. 48(11), 1031–1041 (1991)CrossRefGoogle Scholar
  48. 48.
    B.K. Nelson, W.S. Brightwell, D.R. MacKenzie, A. Khan, J.R. Burg, W.W. Weigel, P.T. Goad, Teratological assessment of methanol and ethanol at high inhalation levels in rats. Fundam. Appl. Toxicol. 5(4), 727–736 (1985)CrossRefGoogle Scholar
  49. 49.
    A. Demirbas, Progress and recent trends in biofuels. Prog. Energy Combust. Sci. 33(1), 1–18 (2007)CrossRefGoogle Scholar
  50. 50.
    A.L. Dicks, Hydrogen generation from natural gas for the fuel cell systems of tomorrow. J. Power Sources 61(1–2), 113–124 (1996)CrossRefGoogle Scholar
  51. 51.
    J. Zhang, W. Peng, Z. Chen, H. Chen, L. Han, Effect of cerium doping in the TiO2 photoanode on the electron transport of dye-sensitized solar cells. J. Phys. Chem. C 116(36), 19182–19190 (2012)CrossRefGoogle Scholar
  52. 52.
    K. Eguchi, T. Setoguchi, T. Inoue, H. Arai, Electrical properties of ceria-based oxides and their application to solid oxide fuel cells. Solid State Ionics 52(1–3), 165–172 (1992)CrossRefGoogle Scholar
  53. 53.
    T.J. Brunner, P. Wick, P. Manser, P. Spohn, R.N. Grass, L.K. Limbach, W.J. Stark, In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ. Sci. Technol. 40(14), 4374–4381 (2006)CrossRefGoogle Scholar
  54. 54.
    Choudhary, B. K. (1980). Bandyopadhyay. Important of mineral content and medicinal properties of Moringa oleifera and Hygrophila auriculata. Sachitra Ayurved, 50(7), 543–549Google Scholar
  55. 55.
    A.K. Dash, G.K. Dutta, K.K. Sardar, G. Sahoo, The ethnomedicinal importance of Hygrophila spinosa T. Anders: a review. Plant Arch. 12(1), 5–9 (2012)Google Scholar
  56. 56.
    S. Ahmed, A. Rahman, M. Mathur, M. Athar, S. Sultana, Anti-tumor promoting activity of Asteracantha long folio against experimental hepatocarcinogenesis in rats. Food Chem. Toxicol. 39(1), 19–28 (2001)CrossRefGoogle Scholar
  57. 57.
    M.S. Hussain, S. Fareed, M. Ali, Hyphenated chromatographic analysis of bioactive gallic acid and quercetin in Hygrophila auriculata (K. Schum) Heine growing wildly in marshy places in India by validated HPTLC method. Asian Pac. J. Trop. Biomed. 2(2), S477–S483 (2012)CrossRefGoogle Scholar
  58. 58.
    N. Singh, G.J. Jenkins, R. Asadi, S.H. Doak, Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev. Exp. 1(5358), 1–15 (2010), CrossRefGoogle Scholar
  59. 59.
    S.J. Soenen, M. De Cuyper, Assessing iron oxide nanoparticle toxicity in vitro: current status and future prospects. Nanomedicine 5(8), 1261–1275 (2010)CrossRefGoogle Scholar
  60. 60.
    N. Kaushik, Saponins of Chlorophytum species. Phytochem. Rev. 4(2), 191–196 (2005)CrossRefGoogle Scholar
  61. 61.
    M.A. Lacaille-Dubois, Bioactive saponins with cancer related and immunomodulatory activity: recent developments. Stud. Nat. Prod. Chem. 32, 209–246 (2005)CrossRefGoogle Scholar
  62. 62.
    H. Meng, Z. Zhang, F. Zhao, T. Qiu, J. Yang, Orthogonal optimization design for the preparation of Fe 3 O 4 nanoparticles via chemical coprecipitation. Appl. Surf. Sci. 280, 679–685 (2013)CrossRefGoogle Scholar
  63. 63.
    Q.A. Pankhurst, J. Connolly, S.K. Jones, J.J. Dobson, Applications of magnetic nanoparticles in biomedicine. J. Phys. D. Appl. Phys. 36(13), R167-1–R167-16 (2003),
  64. 64.
    W. Kai, X. Xiaojun, P. Ximing, H. Zhenqing, Z. Qiqing, Cytotoxic effects and the mechanism of three types of magnetic nanoparticles on human hepatoma BEL-7402 cells. Nanoscale Res. Lett. 6(1), 480-1–48-10 (2011), CrossRefGoogle Scholar
  65. 65.
    A.G. Bodnar, M. Ouellette, M. Frolkis, S.E. Holt, C.P. Chiu, G.B. Morin, W.E. Wright, Extension of life-span by introduction of telomerase into normal human cells. Science 279(5349), 349–352 (1998)CrossRefGoogle Scholar
  66. 66.
    H. Wang, J.A. Joseph, Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic. Biol. Med. 27(5), 612–616 (1999)CrossRefGoogle Scholar
  67. 67.
    M. Gotić, S. Musić, Mössbauer, FT-IR and FE-SEM investigation of iron oxides precipitated from FeSO4 solutions. J. Mol. Struct. 834, 445–453 (2007)CrossRefGoogle Scholar
  68. 68.
    M. Sundrarajan, M. Ramalakshmi, Novel cubic magnetite nanoparticle synthesis using room temperature ionic liquid. J. Chem. 9(3), 1070–1076 (2012)Google Scholar
  69. 69.
    O.M. Lemine, K. Omri, B. Zhang, L. El Mir, M. Sajieddine, A. Alyamani, M. Bououdina, Sol–gel synthesis of 8nm magnetite (Fe3O4) nanoparticles and their magnetic properties. Superlattice. Microst. 52(4), 793–799 (2012)CrossRefGoogle Scholar
  70. 70.
    H. Wang, T.B. Shrestha, M.T. Basel, R.K. Dani, G.M. Seo, S. Balivada, D. Moore, Magnetic-Fe/Fe3O4 nanoparticle-bound SN38 as a carboxylesterase-cleavable prodrug for the delivery to tumors within monocytes/macrophages. Beilstein J. Nanotechnol. 3(1), 444–455 (2012)CrossRefGoogle Scholar
  71. 71.
    S.A. Kulkarni, P.S. Sawadh, P.K. Palei, K.K. Kokate, Effect of synthesis route on the structural, optical and magnetic properties of Fe3O4 nanoparticles. Ceram. Int. 40(1), 1945–1949 (2014)CrossRefGoogle Scholar
  72. 72.
    D. Yoo, J.H. Lee, T.H. Shin, J. Cheon, Theranostic magnetic nanoparticles. Acc. Chem. Res. 44(10), 863–874 (2011)CrossRefGoogle Scholar
  73. 73.
    J.T. Nurmi, P.G. Tratnyek, V. Sarathy, D.R. Baer, J.E. Amonette, K. Pecher, M.D. Driessen, Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ. Sci. Technol. 39(5), 1221–1230 (2005)CrossRefGoogle Scholar
  74. 74.
    M. Auffan, J. Rose, M.R. Wiesner, J.Y. Bottero, Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. Environ. Pollut. 157(4), 1127–1133 (2009)CrossRefGoogle Scholar
  75. 75.
    H. Markides, M. Rotherham, A.J. El Haj, Biocompatibility and toxicity of magnetic nanoparticles in regenerative medicine. J. Nanomater. 2012, 13-1–13-11 (2012),
  76. 76.
    C. Xu, M.S. Inokuma, J. Denham, K. Golds, P. Kundu, J.D. Gold, M.K. Carpenter, The feeder-free growth of undifferentiated human embryonic stem cells. Nat. Biotechnol. 19(10), 971-1–971-5 (2001),
  77. 77.
    C.J. Ku, W. Karunarathne, S. Kenyon, P. Root, D. Spence, Fluorescence determination of nitric oxide production in stimulated and activated platelets. Anal. Chem. 79(6), 2421–2426 (2007)CrossRefGoogle Scholar
  78. 78.
    K.M. Lee, K.H. Choi, M.M. Ouellette, Use of exogenous hTERT to immortalize primary human cells. Cytotechnology 45(1), 33–38 (2004)CrossRefGoogle Scholar
  79. 79.
    H. Matsunaga, J.T. Handa, A. Aotaki-Keen, S.W. Sherwood, M.D. West, L.M. Hjelmeland, Beta-galactosidase histochemistry and telomere loss in senescent retinal pigment epithelial cells. Invest. Ophthalmol. Vis. Sci. 40(1), 197–202 (1999)Google Scholar
  80. 80.
    S. Naqvi, M. Samim, M.Z. Abdin, F.J. Ahmed, A.N. Maitra, C.K. Prashant, A.K. Dinda, Concentration- dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. Int. J. Nanomedicine 5, 983-1–983-7 (2010),
  81. 81.
    C. Cheng, K.H. Müller, K.K. Koziol, J.N. Skepper, P.A. Midgley, M.E. Welland, A.E. Porter, Toxicity and imaging of multi-walled carbon nanotubes in human macrophage cells. Biomaterials 30(25), 4152–4160 (2009)CrossRefGoogle Scholar
  82. 82.
    M. Finkbeiner, A. Inaba, R. Tan, K. Christiansen, H.J. Klüppel, The new international standards for life cycle assessment: ISO 14040 and ISO 14044. Int J Life Cycle Assess 11(2), 80–85 (2006)CrossRefGoogle Scholar
  83. 83.
    D.J. Briggs, A framework for integrated environmental health impact assessment of systemic risks. Environ. Health 7(1), 61 (2008)Google Scholar
  84. 84.
    S. Ross, D. Evans, Use of life cycle assessment in environmental management. Environ. Manage 29(1), 132–142 (2002)CrossRefGoogle Scholar
  85. 85.
    S. Foss Hansen, B.H. Larsen, S.I. Olsen, A. Baun, Categorization framework to aid hazard identification of nanomaterials. Nanotoxicology, 1(3), 243–250 (2007)CrossRefGoogle Scholar
  86. 86.
    I. Linkov, T.P. Seager, Coupling multi-criteria decision analysis, life-cycle assessment, and risk assessment for emerging threats (2011)CrossRefGoogle Scholar
  87. 87.
    S.J. Cowell, R. Fairman, R.E. Lofstedt, Use of risk assessment and life cycle assessment in decision making: a common policy research agenda. Risk Anal 22(5), 879–894 (2002)CrossRefGoogle Scholar
  88. 88.
    ECHA (European Chemicals Agency), 2010 Guidance on information requirements and chemical safety assessment. Chapter R.16: environmental exposure estimation. 2, (2010)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sajid Bashir
    • 1
  • Pranitha Hanumandla
    • 1
  • Hsuan-Yi Huang
    • 1
  • Jingbo Louise Liu
    • 1
  1. 1.Department of ChemistryTexas A&M University-KingsvilleKingsvilleUSA

Personalised recommendations