Advertisement

Recent Progress on the Utilization of Nanomaterials in Microtubular Solid Oxide Fuel Cell

  • Mohd Hilmi Mohamed
  • Siti Munira Jamil
  • Mohd Hafiz Dzarfan Othman
  • Mukhlis A Rahman
  • Juhana Jaafar
  • Ahmad Fauzi Ismail
Chapter

Abstract

This chapter describes the method of producing hollow fiber for a microtubular solid oxide fuel cell (MT-SOFC) using nanomaterial-based structures. This chapter focuses on the utilization of yttrium-stabilized zirconia (YSZ) and cerium-gadolinium oxide (CGO) nanomaterials for high and intermediate working temperatures of MT-SOFC, respectively. The chapter then discusses the nanomaterial available and a number of attempts to produce the nanomaterial for the electrolyte. Then, the advantages of using nanomaterial are also discussed. Finally, this chapter concludes the future of nanomaterial for MT-SOFC and its future challenges.

Keywords

Microtubular solid oxide fuel cell Nanomaterials Yttrium-stabilized zirconia Cerium-gadolinium oxide 

Notes

Acknowledgments

The authors would like to express their gratitude to Universiti Teknologi Malaysia, Research University Grant Tier 1 (12H25), and UTMShine Flagship Grant (03G29) for the support and funds.

References

  1. 1.
    T.X. Cai, Y.W. Zeng, W. Zhang, C.J. Guo, X.W. Yang, Synthesis of nanocomposite nickel oxide/yttrium-stabilized zirconia (NiO/YSZ) powders for anodes of solid oxide fuel cells (SOFCs) via microwave-assisted complex-gel auto-combustion. J. Power Sources 195(5), 1308–1315 (2010)CrossRefGoogle Scholar
  2. 2.
    S. Zhuiykov (ed.), 7 – Nanostructured semiconductor composites for solid oxide fuel cells (SOFCs), in Nanostructured Semiconductor Oxides for the Next Generation of Electronics and Functional Devices, Woodhead Publishing, 321–373 (2014).  https://doi.org/10.1533/9781782422242.321
  3. 3.
    S.M. Jamil, M.H.D. Othman, M.A. Rahman, J. Jaafar, A.F. Ismail, K. Li, Recent fabrication techniques for micro-tubular solid oxide fuel cell support: a review. J. Eur. Ceram. Soc. 35(1), 1–22 (2015)CrossRefGoogle Scholar
  4. 4.
    T. Suzuki, T. Yamaguchi, Y. Fujishiro, M. Awano, Fabrication, and characterization of micro tubular SOFCs for operation in the intermediate temperature. J. Power Sources 160(1), 73–77 (2006)CrossRefGoogle Scholar
  5. 5.
    J.H. Lee, J.W. Heo, D.S. Lee, J. Kim, G.H. Kim, H.W. Lee, H.S. Song, J.H. Moon, The impact of anode microstructure on the power generating characteristics of SOFC. Solid State Ionics 158(3–4), 225–232 (2003)CrossRefGoogle Scholar
  6. 6.
    H.T. Suzuki, T. Uchikoshi, K. Kayashi, T.S. Suzuki, T. Sugiyama, K. Furuya, M. Matsuda, Y. Sakka, F. Munakata, Fabrication of GDC/LSGM/GDC tri-layers on polypyrrole-coated NiO-YSZ by electrophoretic deposition for anode-supported SOFC. J. Ceram. Soc. Jpn. 117(1371), 1246–1248 (2009)CrossRefGoogle Scholar
  7. 7.
    M.H.D. Othman, N. Droushiotis, Z. Wu, G. Kelsall, K. Li, Novel fabrication technique of hollow fiber support for micro-tubular solid oxide fuel cells. J. Power Sources 196(11), 5035–5044 (2011)CrossRefGoogle Scholar
  8. 8.
    T. Suzuki, Y. Funahashi, T. Yamaguchi, Y. Fujishiro, M. Awano, Effect of anode microstructure on the performance of micro tubular SOFCs. Solid State Ionics 180(6–8), 546–549 (2009)CrossRefGoogle Scholar
  9. 9.
    X.X. Meng, X. Gong, N.T. Yang, X.Y. Tan, Z.F. Ma, Preparation and properties of direct-methane solid oxide fuel cell based on a graded Cu-CeO2-Ni-YSZ composite anode. Acta Phys. Chim. Sin. 29(8), 1719–1726 (2013)Google Scholar
  10. 10.
    C.C. Wei, O.Y. Chen, Y. Liu, K. Li, Ceramic asymmetric hollow fiber membranes-one step fabrication process. J. Membr. Sci. 320(1–2), 191–197 (2008)CrossRefGoogle Scholar
  11. 11.
    A. Sarikaya, V. Petrovsky, F. Dogan, Effect of the anode microstructure on the enhanced performance of solid oxide fuel cells. Int. J. Hydrog. Energy 37(15), 11370–11377 (2012)CrossRefGoogle Scholar
  12. 12.
    M.H.D. Othman, Z. Wu, N. Droushiotis, U. Doraswami, G. Kelsall, K. Li, Single-step fabrication and characterizations of electrolyte/anode dual-layer hollow fibers for micro-tubular solid oxide fuel cells. J. Membr. Sci. 351(1–2), 196–204 (2010)CrossRefGoogle Scholar
  13. 13.
    O. Mohd Hafiz Dzarfan, A.R. Mukhlis, L. Kang, J. Juhana, H. Hasrinah, I. Ahmad Fauzi, Ceramic hollow-fiber support through a phase inversion-based extrusion/sintering technique for high-temperature energy conversion systems, in Membrane Fabrication (CRC Press, Florida, 2015), pp. 347–382Google Scholar
  14. 14.
    C.Y. Liu, J.Q. Wang, Z.H. Rong, Mesoporous MCM-48 silica membrane synthesized on a large-pore alpha-Al2O3 ceramic tube. J. Membr. Sci. 287(1), 6–8 (2007)CrossRefGoogle Scholar
  15. 15.
    K. Li, Preparation of ceramic membranes, in Ceramic Membranes for Separation and Reaction (Wiley, 2007), pp. 21–57Google Scholar
  16. 16.
    S.L. Li, S.R. Wang, H.W. Nie, T.L. Wen, A direct-methane solid oxide fuel cell with a double-layer anode. J. Solid State Electrochem. 11(1), 59–64 (2007)CrossRefGoogle Scholar
  17. 17.
    X. Tan, K. Li, Inorganic hollow fiber membranes in catalytic processing. Curr. Opin. Chem. Eng. 1(1), 69–76 (2011)CrossRefGoogle Scholar
  18. 18.
    X. Tan, S. Liu, K. Li, Preparation and characterization of inorganic hollow fiber membranes. J. Membr. Sci. 188(1), 87–95 (2001)CrossRefGoogle Scholar
  19. 19.
    N. Droushiotis, U. Doraswami, D. Ivey, M.H.D. Othman, K. Li, G. Kelsall, Fabrication by co-extrusion and electrochemical characterization of micro-tubular hollow fiber solid oxide fuel cells. Electrochem. Commun. 12(6), 792–795 (2010)CrossRefGoogle Scholar
  20. 20.
    N. Droushiotis, M.H.D. Othman, U. Doraswami, Z. Wu, G. Kelsall, K. Li, Novel co-extruded electrolyte–anode hollow fibers for solid oxide fuel cells. Electrochem. Commun. 11(9), 1799–1802 (2009)CrossRefGoogle Scholar
  21. 21.
    N.H. Othman, Z. Wu, K. Li, Functional dual-layer ceramic hollow fibre membranes for methane conversion. Procedia Eng. 44(0), 1484–1485 (2012)CrossRefGoogle Scholar
  22. 22.
    B.F.K. Kingsbury, K. Li, A morphological study of ceramic hollow fiber membranes. J. Membr. Sci. 328(1–2), 134–140 (2009)CrossRefGoogle Scholar
  23. 23.
    B.H. Rainwater, M. Liu, M. Liu, A more efficient anode microstructure for SOFCs based on proton conductors. Int. J. Hydrog. Energy 37(23), 18342–18348 (2012)CrossRefGoogle Scholar
  24. 24.
    J. Liu, S.A. Barnett, Operation of anode-supported solid oxide fuel cells on methane and natural gas. Solid State Ionics 158(1–2), 11–16 (2003)CrossRefGoogle Scholar
  25. 25.
    J.A. Glasscock, V. Esposito, S.P.V. Foghmoes, T. Stegk, D. Matuschek, M.W.H. Ley, S. Ramousse, The effect of forming stresses on the sintering of ultra-fine Ce0.9Gd0.1O2−δ powders. J. Eur. Ceram. Soc. 33(7), 1289–1296 (2013)CrossRefGoogle Scholar
  26. 26.
    Y. Okawa, Y. Hirata, Sinterability, microstructures and electrical properties of Ni/Sm-doped ceria cermet processed with nanometer-sized particles. J. Eur. Ceram. Soc. 25(4), 473–480 (2005)CrossRefGoogle Scholar
  27. 27.
    V. Gil, C. Moure Jiménez, J. Tartaj, Low-Temperature Synthesis and Sintering Behavior of Gd-Doped Ceria Nano Sized Powders: Comparison Between Two Synthesis Procedures. Síntesis y sinterización de polvo nanométrico de ceria doped con gadolinia: comparación entre dos procedimientos de síntesis, (2009)Google Scholar
  28. 28.
    M. Han, Z. Liu, S. Zhou, L. Yu, Influence of lithium oxide addition on the sintering behavior and electrical conductivity of Gadolinia doped ceria. J. Mater. Sci. Technol. 27(5), 460–464 (2011)CrossRefGoogle Scholar
  29. 29.
    A.I.Y. Tok, L.H. Luo, F.Y.C. Boey, Carbonate co-precipitation of Gd2O3-doped CeO2 solid solution nano-particles. Mater. Sci. Eng. A 383(2), 229–234 (2004)CrossRefGoogle Scholar
  30. 30.
    D.H. Prasad, H.Y. Jung, H.G. Jung, B.K. Kim, H.W. Lee, J.H. Lee, Single step synthesis of nano-sized NiO–Ce0.75Zr0.25O2 composite powders by glycine nitrate process. Mater. Lett. 62(4–5), 587–590 (2008)CrossRefGoogle Scholar
  31. 31.
    D.H. Prasad, J.W. Son, B.K. Kim, H.W. Lee, J.H. Lee, Synthesis of the nano-crystalline Ce0.9Gd0.1O1.95 electrolyte by novel sol–gel thermolysis process for IT-SOFCs. J. Eur. Ceram. Soc. 28(16), 3107–3112 (2008)CrossRefGoogle Scholar
  32. 32.
    D. Hari Prasad, H.R. Kim, J.S. Park, J.W. Son, B.K. Kim, H.W. Lee, J.H. Lee, Superior sinterability of nano-crystalline gadolinium doped ceria powders synthesized by co-precipitation method. J. Alloys Compd. 495(1), 238–241 (2010)CrossRefGoogle Scholar
  33. 33.
    V. Gil, J. Gurauskis, R. Campana, R.I. Merino, A. Larrea, V.M. Orera, Anode-supported microtubular cells fabricated with gadolinia-doped ceria nanopowders. J. Power Sources 196(3), 1184–1190 (2011)CrossRefGoogle Scholar
  34. 34.
    H.H. Kausch, D.G. Fesko, N.W. Tschoegl, The random packing of circles in a plane. J. Colloid Interface Sci. 37(3), 603–611 (1971)CrossRefGoogle Scholar
  35. 35.
    P. Muralidharan, S.H. Jo, D.K. Kim, Electrical conductivity of submicrometer gadolinia-doped ceria sintered at 1000°C using precipitation-synthesized nanocrystalline powders. J. Am. Ceram. Soc. 91(10), 3267–3274 (2008)CrossRefGoogle Scholar
  36. 36.
    E. Ruiz-Trejo, J. Santoyo-Salazar, R. Vilchis-Morales, A. Benítez-Rico, F. Gómez-García, C. Flores-Morales, J. Chávez-Carvayar, G. Tavizón, Microstructure and electrical transport in nano-grain sized Ce0.9Gd0.1O2−δ ceramics. J. Solid State Chem. 180(11), 3093–3100 (2007)CrossRefGoogle Scholar
  37. 37.
    K. Kendall, N.Q. Minh, S.C. Singhal, Chapter 8 – Cell and stack designs, in High Temperature and Solid Oxide Fuel Cells, (John Wiley and Sons, Inc., Hoboken, NJ, Elsevier Science, Amsterdam, 2003), pp. 197–228Google Scholar
  38. 38.
    G. Ye, F. Ju, C. Lin, S. Gopalan, U. Pal, D. Seccombe, Single-Step Co-Firing Technique for SOFC Fabrication, in Advances in Solid Oxide Fuel Cells: Ceramic Engineering and Science Proceedings, ed. by N. P. Bansal (John Wiley and Sons, Inc., Hoboken, NJ, 2008), 26(4), pp. 25–32.  https://doi.org/10.1002/9780470291245.ch3
  39. 39.
    S.-D. Kim, H. Moon, S.-H. Hyun, J. Moon, J. Kim, H.-W. Lee, Nano-composite materials for high-performance and durability of solid oxide fuel cells. J. Power Sources 163(1), 392–397 (2006)CrossRefGoogle Scholar
  40. 40.
    C. Chen, M. Liu, L. Yang, M. Liu, Anode-supported micro-tubular SOFCs fabricated by a phase-inversion and dip-coating process. Int. J. Hydrog. Energy 36(9), 5604–5610 (2011)CrossRefGoogle Scholar
  41. 41.
    C.-C. Chao, C.-M. Hsu, Y. Cui, F.B. Prinz, Improved solid oxide fuel cell performance with nanostructured electrolytes. ACS Nano 5(7), 5692–5696 (2011)CrossRefGoogle Scholar
  42. 42.
    M.H.D. Othman, N. Droushiotis, Z. Wu, K. Kanawka, G. Kelsall, K. Li, Electrolyte thickness control and its effect on electrolyte/anode dual-layer hollow fibers for micro-tubular solid oxide fuel cells. J. Membr. Sci. 365(1–2), 382–388 (2010)CrossRefGoogle Scholar
  43. 43.
    D. Das, B. Bagchi, R.N. Basu, Nanostructured zirconia thin film fabricated by an electrophoretic deposition technique. J. Alloys Compd. 693, 1220–1230 (2017)CrossRefGoogle Scholar
  44. 44.
    C.C. Wei, K. Li, Yttria-stabilized zirconia (YSZ)-based hollow fiber solid oxide fuel cells. Ind. Eng. Chem. Res. 47(5), 1506–1512 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mohd Hilmi Mohamed
    • 1
    • 2
  • Siti Munira Jamil
    • 1
    • 2
  • Mohd Hafiz Dzarfan Othman
    • 1
    • 2
  • Mukhlis A Rahman
    • 1
    • 2
  • Juhana Jaafar
    • 1
    • 2
  • Ahmad Fauzi Ismail
    • 1
    • 2
  1. 1.Advanced Membrane Technology Research CentreUniversiti Teknologi MalaysiaJohorMalaysia
  2. 2.Renewable Energy Research Group, Department of Energy Engineering, Faculty of Chemical and Energy EngineeringUniversiti Teknologi MalaysiaJohorMalaysia

Personalised recommendations