Skip to main content

Abstract

Hydrogen (H2) is a promising replacement energy carrier and storage molecular due to its high energy density by weight. For the constraint of size and weight in vehicles, the onboard hydrogen storage system has to be small and lightweight. Therefore, a lot of research is devoted to finding an efficient method of hydrogen storage based on both mechanical compression and sorption on solid-state materials. An overview of the current research trend and perspectives on materials-based hydrogen storage including both physical and chemical storage is provided in the present paper. Part of this chapter was dedicated to recent results on two innovative materials: hybrid materials based on manganese oxide anchored to a polymeric matrix and natural volcanic powders. A prototype H2 tank, filled with the developed hybrid material, was realized and integrated into a polymer electrolyte membrane (PEM) single fuel cell (FC) demonstrating the material capability to coupling with the FC.

Author Contribution

ROLANDO PEDICINI, National Research Council-Institute for Advanced Energy Technologies (CNR-ITAE)IRENE GATTO, National Research Council-Institute for Advanced Energy Technologies (CNR-ITAE)ENZA PASSALACQUA, National Research Council-Institute for Advanced Energy Technologies (CNR-ITAE). The authors further acknowledge that there is no financial relationship with the editors or publisher and have contributed original work in this chapter, other than what was acknowledged or appropriately cited with copyright permission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Borowitz, Farewell Fossil Fuels, Springer Science book ISBN 978-0-306 45781-4, (1999)

    Google Scholar 

  2. http://www.fch.europa.eu/page/multi-annual-work-plan

  3. S. Iijima, Nature 354, 56 (1991); A.C. Dillon, K.M. Jones, T.A. Bekke-dahl, H. Kiang, D.S. Bethune, M.J. Heben, Storage of hydrogen in single-walled carbon nanotubes. Nature 386, 377–379 (1997)

    Google Scholar 

  4. E. Poirier, R. Chahine, T.K. Bose, Int. J. Hydrog. Energy 26, 831 (2001)

    Article  CAS  Google Scholar 

  5. H. Wang, Q. Gao, J. Hu, High hydrogen storage capacity of porous carbons prepared by using activated carbon. J. Am. Chem. Soc. 131, 7016–7022 (2009)

    Article  CAS  Google Scholar 

  6. Z. Wang, L. Sun, F. Xu, H. Zhou, X. Peng, D. Sun, J. Wang, Y. Du, Nitrogen-doped porous carbons with high performance for hydrogen storage. Int. J. Hydrogen Energy 41, 8489–8497 (2016)

    Article  CAS  Google Scholar 

  7. H. Jung, K.T. Park, M.N. Gueye, S.H. So, C.R. Park, Bio-inspired graphene foam decorated with Pt nanoparticles for hydrogen storage at room temperature. Int. J. Hydrogen Energy 41, 5019–5027 (2016)

    Article  CAS  Google Scholar 

  8. N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O’Keeffe, O.M. Yaghi, Hydrogen storage in microporous metal-organic frameworks. Science 300, 1127–1129 (2003)

    Article  CAS  Google Scholar 

  9. K. Koh, A.G. Wong-Foy, A.J. Matzger, A porous coordination copolymer with over 5000 m2/g BET surface area. J. Am. Chem. Soc. 131, 4184–4185 (2009)

    Article  CAS  Google Scholar 

  10. N.M. Musyoka, J. Ren, P. Annamalai, H.W. Langmi, B.C. North, M. Mathe, D. Bessarabov, Synthesis of a hybrid MIL-101(Cr)/ZTC composite for hydrogen storage applications. Res. Chem. Intermed. 42, 5299–5307 (2016)

    Article  CAS  Google Scholar 

  11. D. Ramimoghadam, E. MacA Gray, C.J. Webb, Review of polymers of intrinsic microporosity for hydrogen storage applications. Int. J. Hydrogen Energy 41, 16944–16965 (2016)

    Article  CAS  Google Scholar 

  12. O. Elishav, D.R. Lewin, G.E. Shter, G.S. Grader, The nitrogen economy: economic conomic feasibility analysis of nitrogen-based fuels as energy carriers. Appl. Energy 185, 183–188 (2017). https://doi.org/10.1016/j.apenergy.2016.10.088

    Article  CAS  Google Scholar 

  13. P.L. Bramwell, S. Lentink, P. Ngene, P.E. De Jongh, Effect of pore confinement of LiNH2 on ammonia decomposition catalysis and the storage of hydrogen and ammonia. J. Phys. Chem. C 120(48), 27212–27220 (2016). https://doi.org/10.1021/acs.jpcc.6b10688

    Article  CAS  Google Scholar 

  14. Y.Z. Ge, W.Y. Ye, Z.H. Shah, X.J. Lin, R.W. Lu, S.F. Zhang, PtNi/NiO clusters coated by hollow silica: novel design for highly efficient hydrogen production from ammonia-borane. ACS Appl. Mater. Interfaces 9(4), 3749–3756 (2017). https://doi.org/10.1021/acsami.6b15020

    Article  CAS  Google Scholar 

  15. M. Baricco, M. Bang, M. Fichtner, B. Hauback, M. Linder, C. Luetto, P. Moretto, M. Sgroi, SSH2S: Hydrogen storage in complex hydrides for an auxiliary power unit based on high-temperature proton exchange membrane fuel cells. J. Power Sources 342, 853–860 (2017). https://doi.org/10.1016/j.jpowsour.2016.12.107

    Article  CAS  Google Scholar 

  16. X. Zhang, R.Y. Wu, Z.Y. Wang, M.X. Gao, H.G. Pan, Y.F. Liu, Preparation and catalytic activity of a novel nanocrystalline ZrO2@C composite for hydrogen storage in NaAlH4. Chem-Asian J 11(24), 3541–3549 (2016). https://doi.org/10.1002/asia.201601204

    Article  CAS  Google Scholar 

  17. G. Zou, B. Liu, J. Guo, Q. Zhang, C. Fernandez, Q. Peng, Synthesis of nanoflower-shaped MXene derivative with unexpected catalytic activity for dehydrogenation of sodium Alanates. ACS Appl. Mater. Interfaces 9(8), 7611–7618 (2017). https://doi.org/10.1021/acsami.6b13973

    Article  CAS  Google Scholar 

  18. J.R. Ares, J. Zhang, T. Charpentier, F. Cuevas, M. Latroche, Asymmetric reaction paths and hydrogen sorption mechanism in mechanochemically synthesized potassium alanate (KAlH4). J. Phys. Chem. C 120(38), 21299–21308 (2016). https://doi.org/10.1021/acs.jpcc.6b07589

    Article  CAS  Google Scholar 

  19. Y.F. Ma, Y. Li, T. Liu, X. Zhao, L. Zhang, S.M. Han, Y.J. Wang, Enhanced hydrogen storage properties of LiBH4 generated using a porous Li3BO3 catalyst. J. Alloys Compd. 689, 187–191 (2016). https://doi.org/10.1016/j.jallcom.2016.07.313

    Article  CAS  Google Scholar 

  20. S.C. Li, F.C. Wang, The development of a sodium borohydride hydrogen generation system for proton exchange membrane fuel cell. Int. J. Hydrog. Energy 41(4), 3038–3051 (2016). https://doi.org/10.1016/j.ijhydene.2015.12.019

    Article  CAS  Google Scholar 

  21. D. Lu, G.F. Yu, Y. Li, M.H. Chen, Y.X. Pan, L.Q. Zhou, K.Z. Yang, X. Xiong, P. Wu, Q.H. Xia, RuCo NPs supported on MIL-96(Al) as highly active catalysts for the hydrolysis of ammonia borane. J. Alloys Compd. 694, 662–671 (2017). https://doi.org/10.1016/j.jallcom.2016.10.055

    Article  CAS  Google Scholar 

  22. L.M. Zhou, J. Meng, P. Li, Z.L. Tao, L.Q. Mai, J. Chen, Ultrasmall cobalt nanoparticles supported on nitrogen-doped porous carbon nanowires for hydrogen evolution from ammonia borane. Mater. Horiz. 4(2), 268–273 (2017). https://doi.org/10.1039/c6mh00534a

    Article  CAS  Google Scholar 

  23. M. Rueda, L.M. Sanz-Moral, J.S.B. Jose, A. Martin, Improvement of the kinetics of hydrogen release from ammonia borane confined in silica aerogel. Microporous Mesoporous Mater. 237, 189–200 (2017). https://doi.org/10.1016/j.micromeso.2016.09.030

    Article  CAS  Google Scholar 

  24. Z.J. Zhang, Y.Q. Wang, X.S. Chen, Z.H. Lu, Facile synthesis of NiPt-CeO2 nanocomposite as an efficient catalyst for hydrogen generation from hydrazine borane. J. Power Sources 291, 14–19 (2015). https://doi.org/10.1016/j.jpowsour.2015.05.012

    Article  CAS  Google Scholar 

  25. R. Moury, K. Robeyns, Y. Filinchuk, P. Miele, U.B. Demirci, In situ thermodiffraction to monitor synthesis and thermolysis of hydrazine borane-based materials. J. Alloys Compd. 659, 210–216 (2016). https://doi.org/10.1016/j.jallcom.2015.11.052

    Article  CAS  Google Scholar 

  26. P. Chen, E. Akiba, S. Orimo, A. Zuettel, L. Schlapbach, Hydrogen storage by reversible metal hydride formation in the Book: Hydrogen Science and Engineering: Materials, Processes, Systems and Technology (2016)

    Google Scholar 

  27. G. Friedlmeier, M. Groll, Experimental analysis and modeling of the hydriding kinetics of Ni-doped and pure Mg. J. Alloy Compd, Elsevier-Amsterdam, 253–254, 550–555 (1997)

    Google Scholar 

  28. H. Wang, H.J. Lin, W.T. Cai, L.Z. Ouyang, M. Zhu, Tuning kinetics and thermodynamics of hydrogen storage in light metal element based systems – a review of recent progress. J. Alloys Compd. 658, 280–300 (2016)

    Article  Google Scholar 

  29. M. Ron, The normalized pressure dependence method for the evaluation of kinetic rates of metal hydride formation/decomposition. J. Alloy Compd. 283, 178–191 (1999)

    Article  CAS  Google Scholar 

  30. C.S. Wang, X.H. Wang, Y.Q. Lei, C.P. Chen, Q.D. Wang, The hydriding kinetics of MlNi5 – I. Development of the model. Int. J. Hydrogen Energy 21, 471–478 (1996)

    Article  CAS  Google Scholar 

  31. J. Yang, A. Sudik, C. Wolverton, D.J. Siegel, High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery. Chem. Soc. Rev. 39, 656–675 (2010)

    Article  CAS  Google Scholar 

  32. K. Sanjay, H. Miyaoka, T. Ichikawa, G.K. Dey, Y. Kojima, Micro-alloyed Mg2Ni for better performance as negative electrode of Ni-MH battery and hydrogen storage. Int. J. Hydrog. Energy 42, 5220–5226 (2017)

    Article  Google Scholar 

  33. R. Pedicini, I. Gatto, M. Coduri, C.A. Biffi, A. Tuissi, Preliminary investigation on metal alloy based on Cr/Ti, HYPOTHESIS XII Conference, Syracuse, 28–30 June 2017

    Google Scholar 

  34. H. Imoto, M. Sasaki, T. Saito, Y. Sasaki, Bull. Chem. Soc. Jpn. 53(6), 1584–1587 (1980)

    Article  CAS  Google Scholar 

  35. W.R. Schmidt, Activity report of the United Technologies Research Center for the Polymer Dispersed Metal Hydride program, DOE contract DEFC36-00G010535

    Google Scholar 

  36. Z. Liu, Z. Lei, Cyclic hydrogen storage properties of Mg milled with nickel nano-powders and MnO2. J. Alloys Compd. 443, 121–124 (2007)

    Article  CAS  Google Scholar 

  37. Y. Suttisawat, P. Rangsunvigit, B. Kitiyanan, S. Kulprathipanja, Effect of co-dopants on hydrogen desorption/absorption of HfCl4- and TiO2- doped NaAlH4. Int. J. Hydrog. Energy 33, 6195–6200 (2008)

    Article  CAS  Google Scholar 

  38. R. Pedicini, A. Saccà, A. Carbone, E. Passalacqua, Hydrogen storage based on the polymeric material. Int. J. Hydrog. Energy 36, 9062–9068 (2011)

    Article  CAS  Google Scholar 

  39. G. Zhu, H. Li, L. Deng, Z.H. Liu, Low-temperature synthesis of δ-MnO2 with large surface area and its capacitance. Mater. Lett. 64, 1763–1765 (2010)

    Article  CAS  Google Scholar 

  40. A.D. Zdetsis, M.M. Sigalas, E.N. Koukarasad, Phys. Chem. Chem. Phys. 16, 14172–14182 (2014)

    Article  CAS  Google Scholar 

  41. R. Pedicini, F. Matera, G. Giacoppo, I. Gatto, E. Passalacqua, Int. J. Hydrogen Energy 40, 17388–17393 (2015)

    Article  CAS  Google Scholar 

  42. R. Pedicini, L. Miraglia, A. Carbone, E. Passalacqua, I. Gatto, Interesting hydrogen storage behavior of volcanic powders, The III Energy & Materials Research Conference – EMR 2017 Lisbon, 5–7 Apr 2017

    Google Scholar 

  43. L. Miraglia, Tech. Report INGV 261, 5–24 (2013)

    Google Scholar 

Download references

Acknowledgments

The hybrid material activity was developed within the Research Project AdP CNR-MSE and financing from the Research Fund for the Electrical System, with theme: International Project “Nuclear, Hydrogen, Fuel Cells” e Activity 2.6: Polymeric materials for hydrogen storage.

The authors are grateful to Dr. Ausonio Tuissi (CNR-ICMATE) for his collaboration in TiCr development and Dr. Lucia Miraglia (INGV) for his support in lava material characterizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolando Pedicini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pedicini, R., Gatto, I., Passalacqua, E. (2018). Solid-State Materials for Hydrogen Storage. In: Li, F., Bashir, S., Liu, J. (eds) Nanostructured Materials for Next-Generation Energy Storage and Conversion. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56364-9_15

Download citation

Publish with us

Policies and ethics