Application of DFT Methods to Investigate Activity and Stability of Oxygen Reduction Reaction Electrocatalysts

Chapter

Abstract

Proton exchange membrane fuel cells (PEMFCs) are considered one of the most promising energy conversion devices due to their high-energy yield and low environmental impact of hydrogen oxidation. The oxygen reduction reaction (ORR) at cathode plays a crucial role during operation of the PEMFCs. However, for various classes of ORR catalysts, the detailed mechanism and the origin of activities require an in-depth understanding. This chapter focuses on the application of density functional theory (DFT) methods in investigating the activity and stability of ORR electrocatalysts to advance the PEMFC performance. The authors systematically reviewed the descriptors to evaluate the catalyst activity, such as adsorption properties of ORR intermediates, potential energy surfaces, reversible potentials, reaction barriers, and catalyst electronic structures. They also discussed various methods implemented to evaluate the ORR stabilities, such as metal dissolution potentials, metal cohesive energies, and binding energies of metal in the active sites.

Keywords

Proton exchange membrane fuel cell Electrocatalysts Oxygen reduction reaction Density functional theory (DFT) 

Notes

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Agreement code No. 51602270). Two publications Lecture Notes in Energy, Volume 9 (2013), Electrocatalysis in Fuel Cells: A Non- and Low-Platinum Approach, and Screening of catalytic oxygen reduction reaction activity of metal-doped graphene by density functional theory, Applied Surface Science Volume 379, 30 August 2016, pages 291–295, have been cited and are duly acknowledged. The authors appreciated the scientists who described useful views that were cited in this chapter.

References

  1. 1.
    A.J. Appleby, Electrocatalysis of aqueous dioxygen reduction. J. Electroanal. Chem. 357(1–2), 117–179 (1993)CrossRefGoogle Scholar
  2. 2.
    N.M. Markovic, P.N. Ross Jr., Surface science studies of model fuel cell electrocatalysts. Surf. Sci. Rep. 45(4–6), 117–229 (2002)CrossRefGoogle Scholar
  3. 3.
    A.C. Luntz, M.D. Williams, D.S. Bethune, The sticking of O2 on a Pt(111) surface. J. Chem. Phys. 89(7), 4381–4395 (1988)CrossRefGoogle Scholar
  4. 4.
    J. Grimbolt, A.C. Luntz, D.E. Fowler, Low-temperature adsorption of O2 on Pt(111). J. Electron Spectrosc. Relat. Phenom. 52, 161–174 (1990)CrossRefGoogle Scholar
  5. 5.
    B.A. Sexton, Identification of adsorbed species at metal-surfaces by electron-energy loss spectroscopy (EELS). Appl. Phys. A Mater. Sci. Process. 26(1), 1–18 (1981)CrossRefGoogle Scholar
  6. 6.
    E. Jensen, R.A. Bartynski, T. Gustafsson, E.W. Plummer, Angle-resolved photoemission study of the electronic structure of beryllium: bulk band dispersions and many-electron effects. Phys. Rev. B 30(10–15), 5500–5507 (1984)CrossRefGoogle Scholar
  7. 7.
    X. Chen, D. Xia, Z. Shi, J. Zhang, Theoretical study of oxygen reduction reaction catalysts: from Pt to non-precious metal catalysts, in Electrocatalysis in Fuel Cells, ed. by M. Shao (Ed), (Springer, London, 2013), pp. 339–373Google Scholar
  8. 8.
    E. Yeager, Electrocatalysts for O2 reduction. Electrochim. Acta 29(11), 1527–1537 (1984)CrossRefGoogle Scholar
  9. 9.
    J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jonsson, Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108(46), 17886–17892 (2004)CrossRefGoogle Scholar
  10. 10.
    J.K. Nørskov, T. Bligaard, A. Logadottir, S. Bahn, L.B. Hansen, M. Bollinger, H. Bengaard, B. Hammer, Z. Sljivancanin, M. Mavrikakis, Y. Xu, S. Dahl, C.J.H. Jacobsen, Universality in heterogeneous catalysis. J. Catal. 209(2), 275–278 (2002)CrossRefGoogle Scholar
  11. 11.
    Y. Xu, A.V. Ruban, M. Mavrikakis, Adsorption and dissociation of O2 on Pt−Co and Pt−Fe alloys. J. Am. Chem. Soc. 126(14), 4717–4725 (2004)CrossRefGoogle Scholar
  12. 12.
    J.R. Kitchin, J.K. Nørskov, M.A. Barteau, J.G. Chen, Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals. J. Chem. Phys. 120(21), 10240–10246 (2004)CrossRefGoogle Scholar
  13. 13.
    U.A. Paulus, A. Wokaun, G.G. Scherer, T.J. Schmidt, V. Stamenkovic, V. Radmilovic, N.M. Markovic, P.N. Ross, Oxygen reduction on carbon-supported Pt-Ni and Pt-Co alloy catalysts. J. Phys. Chem. B 106(16), 4181–4191 (2002)CrossRefGoogle Scholar
  14. 14.
    M. Min, J. Cho, K. Cho, H. Kim, Particle size and alloying effects of Pt-based alloy catalysts for fuel cell applications. Electrochim. Acta 45(25–26), 4211–4217 (2000)CrossRefGoogle Scholar
  15. 15.
    M. Neergat, A.K. Shukla, K.S. Gandhi, Platinum-based alloys as oxygen-reduction catalysts for solid-polymer-electrolyte direct methanol fuel cells. J. Appl. Electrochem. 31(4), 373–378 (2001)CrossRefGoogle Scholar
  16. 16.
    I.E.L. Stephens, A.S. Bondarenko, F.J. Perez-Alonso, F. Calle-Vallejo, L. Bech, T.P. Johansson, A.K. Jepsen, R. Frydendal, B.P. Knudsen, J. Rossmeisl, I. Chorkendorff, Tuning the activity of Pt(111) for oxygen electro-reduction by sub surface alloying. J. Am. Chem. Soc. 133(14), 5485–5491 (2011)CrossRefGoogle Scholar
  17. 17.
    K.R. Lee, Y. Jung, S.I. Woo, Combinatorial screening of highly active Pd binary catalysts for electrochemical oxygen reduction. ACS Comb. Sci. 14(1), 10–16 (2012)CrossRefGoogle Scholar
  18. 18.
    R. Chen, H. Li, D. Chu, G. Wang, Unraveling oxygen reduction reaction mechanisms on carbon-supported Fe-phthalocyanine and Co-phthalocyanine catalysts in alkaline solutions. J. Phys. Chem. C 113(48), 20689–20697 (2009)CrossRefGoogle Scholar
  19. 19.
    X. Chen, The role of chelating ligands and central metals in the oxygen reduction reaction activity: a DFT study. Russ. J. Electrochem. 52(6), 555–559 (2016)CrossRefGoogle Scholar
  20. 20.
    X. Chen, S. Chen, J. Wang, Screening of catalytic oxygen reduction reaction activity of metal-doped graphene by density functional theory. Appl. Surf. Sci. 379, 291–295 (2016)CrossRefGoogle Scholar
  21. 21.
    H.A. Hansen, J. Rossmeisl, J.K. Nørskov, Surface pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT. Phys. Chem. Chem. Phys. 10(25), 3722–3730 (2008)CrossRefGoogle Scholar
  22. 22.
    J. Rossmeisl, J. Greeley, G.S. Karlberg, Electrocatalysis and catalyst screening from density functional theory calculations, in Fuel Cell Catalysis, ed. by M. T. M. Koper (Ed), (Wiley, Hoboken, 2009), pp. 57–92Google Scholar
  23. 23.
    X. Chen, F. Li, X. Wang, S. Sun, D. Xia, Density functional theory study of the oxygen reduction reaction on a cobalt-polypyrrole composite catalyst. J. Phys. Chem. C 116(23), 12553–12558 (2012)CrossRefGoogle Scholar
  24. 24.
    X. Chen, S. Sun, X. Wang, F. Li, D. Xia, DFT study of polyaniline and metal composites as nonprecious metal catalysts for oxygen reduction in fuel cells. J. Phys. Chem. C 116(43), 22737–22742 (2012)CrossRefGoogle Scholar
  25. 25.
    S. Kattel, P. Atanassov, B. Kiefer, Density functional theory study of Ni−Nx/C electrocatalyst for oxygen reduction in alkaline and acidic media. J. Phys. Chem. C 116(33), 17378–17383 (2012)CrossRefGoogle Scholar
  26. 26.
    S. Kattel, P. Atanassov, B. Kiefer, Catalytic activity of Co−Nx/C electrocatalysts for oxygen reduction reaction: a density functional theory study. Phys. Chem. Chem. Phys. 15(1), 148–153 (2013)CrossRefGoogle Scholar
  27. 27.
    H.Y. Su, Y. Gorlin, I.C. Man, F. Calle-Vallejo, J.K. Nørskov, T.F. Jaramillo, J. Rossmeisl, Identifying active surface phases for metal oxide electrocatalysts: a study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis. Phys. Chem. Chem. Phys. 14(40), 14010–14022 (2012)CrossRefGoogle Scholar
  28. 28.
    G. Wang, F. Huang, X. Chen, C. Gong, H. Liu, S. Wen, F. Cheng, X. Zheng, G. Zheng, M. Pan, A first-principle study of oxygen reduction reaction on monoclinic zirconia (ī11), (ī01) and (110) surfaces. Catal. Commun. 69, 16–19 (2015)CrossRefGoogle Scholar
  29. 29.
    J. Roques, A.B. Anderson, Theory for the potential shift for OHads formation on the Pt skin on Pt3Cr(111) in acid. J. Electrochem. Soc. 151(3), E85–E91 (2004)CrossRefGoogle Scholar
  30. 30.
    A.B. Anderson, R.A. Sidik, Oxygen electroreduction on FeII and FeIII coordinated to N4 chelates. Reversible potentials for the intermediate steps from quantum theory. J. Phys. Chem. B 108(16), 5031–5035 (2004)CrossRefGoogle Scholar
  31. 31.
    J. Roques, A.B. Anderson, Pt3Cr(111) alloy effect on the reversible potential of OOH(ads) formation from O2(ads) relative to Pt(111). J. Fuel Cell Sci. Technol. 2(2), 86–93 (2005)CrossRefGoogle Scholar
  32. 32.
    H. Schweiger, E. Vayner, A.B. Anderson, Why is there such a small overpotential for O2 electroreduction by copper laccase? Electrochem. Solid-State Lett. 8(11), A585–A587 (2005)CrossRefGoogle Scholar
  33. 33.
    R.A. Sidik, A.B. Anderson, Co9S8 as a catalyst for electroreduction of O2: quantum chemistry predictions. J. Phys. Chem. B 110(2), 936–941 (2006)CrossRefGoogle Scholar
  34. 34.
    R.A. Sidik, A.B. Anderson, O2 reduction on graphite and nitrogen-doped graphite: experiment and theory. J. Phys. Chem. B 110(4), 1787–1793 (2006)CrossRefGoogle Scholar
  35. 35.
    E. Vayner, H. Schweiger, A.B. Anderson, Four-electron reduction of O2 over multiple CuI centers: quantum theory. J. Electroanal. Chem. 607(1–2), 90–100 (2007)CrossRefGoogle Scholar
  36. 36.
    E. Vayner, A.B. Anderson, Theoretical predictions concerning oxygen reduction on nitrided graphite edges and a cobalt center bonded to them. J. Phys. Chem. C 111(26), 9330–9336 (2007)CrossRefGoogle Scholar
  37. 37.
    E. Vayner, R.A. Sidik, A.B. Anderson, Experimental and theoretical study of cobalt selenide as a catalyst for O2 electroreduction. J. Phys. Chem. C 111(28), 10508–10513 (2007)CrossRefGoogle Scholar
  38. 38.
    K.A. Kurak, A.B. Anderson, Nitrogen-treated graphite and oxygen electroreduction on pyridinic edge sites. J. Phys. Chem. C 113(16), 6730–6734 (2009)CrossRefGoogle Scholar
  39. 39.
    K.A. Kurak, A.B. Anderson, Selenium: a nonprecious metal cathode catalyst for oxygen reduction. J. Electrochem. Soc. 157(1), B173–B179 (2010)CrossRefGoogle Scholar
  40. 40.
    X. Chen, Q. Qiao, L. An, D. Xia, Why do boron and nitrogen doped α- and γ-Graphyne exhibit different oxygen reduction mechanism? A first-principles study. J. Phys. Chem. C 119(21), 11493–11498 (2015)CrossRefGoogle Scholar
  41. 41.
    A.B. Anderson, T.V. Albu, Ab initio determination of reversible potentials and activation energies for outer-sphere oxygen reduction to water and the reverse oxidation reaction. J. Am. Chem. Soc. 121(50), 11855–11863 (1999)CrossRefGoogle Scholar
  42. 42.
    J. Zhang, Z. Wang, Z. Zhu, The inherent kinetic electrochemical reduction of oxygen into H2O on FeN4-carbon: a density functional theory study. J. Power Sources 255, 65–69 (2014)CrossRefGoogle Scholar
  43. 43.
    X. Zhang, Z. Lu, Z. Fu, Y. Tang, D. Ma, Z. Yang, The mechanisms of oxygen reduction reaction on phosphorus doped graphene: a first-principles study. J. Power Sources 276, 222–229 (2015)CrossRefGoogle Scholar
  44. 44.
    Z. Duan, G. Wang, A first principles study of oxygen reduction reaction on a Pt(111) surface modified by a subsurface transition metal M (M = Ni, Co, or Fe). Phys. Chem. Chem. Phys. 13(45), 20178–20187 (2011)CrossRefGoogle Scholar
  45. 45.
    Z. Duan, G. Wang, Comparison of reaction energetics for oxygen reduction reactions on Pt(100), Pt(111), Pt/Ni(100), and Pt/Ni(111) surfaces: a first-principles study. J. Phys. Chem. C 117(12), 6284–6292 (2013)CrossRefGoogle Scholar
  46. 46.
    S. Kattel, G. Wang, Reaction pathway for oxygen reduction on FeN4 embedded graphene. J. Phys. Chem. Lett. 5(3), 452–456 (2014)CrossRefGoogle Scholar
  47. 47.
    B. Hammer, J.K. Nørskov, Why gold is the noblest of all the metals. Nature 376(6537), 238–240 (1995)CrossRefGoogle Scholar
  48. 48.
    B. Hammer, Y. Morikawa, J.K. Nørskov, CO chemisorption at metal surfaces and overlayers. Phys. Rev. Lett. 76(12), 2141–2144 (1996)CrossRefGoogle Scholar
  49. 49.
    L.A. Kibler, A.M. El-Aziz, R. Hoyer, D.M. Kolb, Tuning reaction rates by lateral strain in a palladium monolayer. Angew. Chem. Int. Ed. 44(14), 2080–2084 (2005)CrossRefGoogle Scholar
  50. 50.
    V.R. Stamenkovic, B. Fowler, B.S. Mun, G. Wang, P.N. Ross, C.A. Lucas, N.M. Marković, Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315(5811), 493–497 (2007)CrossRefGoogle Scholar
  51. 51.
    V. Stamenkovic, B.S. Mun, K.J.J. Mayrhofer, P.N. Ross, N.M. Markovic, J. Rossmeisl, J. Greeley, J.K. Nørskov, Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew. Chem. Int. Ed. 45(18), 2897–2901 (2006)CrossRefGoogle Scholar
  52. 52.
    J. Aihara, Reduced homo-lumo gap as an index of kinetic stability for polycyclic aromatic hydrocarbons. J. Phys. Chem. A 103(37), 7487–7495 (1999)CrossRefGoogle Scholar
  53. 53.
    X. Chen, F. Li, N. Zhang, L. An, D. Xia, Mechanism of oxygen reduction reaction catalyzed by Fe(Co)−Nx/C. Phys. Chem. Chem. Phys. 15(44), 19330–19336 (2013)CrossRefGoogle Scholar
  54. 54.
    X. Chen, Oxygen reduction reaction on cobalt−(n)pyrrole clusters from DFT studies. RSC Adv. 6(7), 5535–5540 (2016)CrossRefGoogle Scholar
  55. 55.
    X. Chen, Graphyne nanotubes as electrocatalysts for oxygen reduction reaction: the effect of doping elements on the catalytic mechanisms. Phys. Chem. Chem. Phys. 17(43), 29340–29343 (2015)CrossRefGoogle Scholar
  56. 56.
    L. Zhang, Z. Xia, Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells. J. Phys. Chem. C 115(22), 11170–11176 (2011)CrossRefGoogle Scholar
  57. 57.
    M. Shao, A. Peles, K. Shoemaker, Electrocatalysis on platinum nanoparticles: particle size effect on oxygen reduction reaction activity. Nano Lett. 11(9), 3714–3719 (2011)CrossRefGoogle Scholar
  58. 58.
    K. Sasaki, H. Naohara, Y. Cai, Y.M. Choi, P. Liu, M.B. Vukmirovic, J.X. Wang, R.R. Adzic, Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes. Angew. Chem. Int. Ed. 49(46), 8602–8607 (2010)CrossRefGoogle Scholar
  59. 59.
    J.K. Seo, A. Khetan, M.H. Seo, H. Kim, B. Han, First-principles thermodynamic study of the electrochemical stability of Pt nanoparticles in fuel cell applications. J. Power Sources 238, 137–143 (2013)CrossRefGoogle Scholar
  60. 60.
    S.H. Noh, M.H. Seo, J.K. Seo, P. Fischer, B. Han, First principles computational study on the electrochemical stability of Pt−Co nanocatalysts. Nanoscale 5(18), 8625–8633 (2013)CrossRefGoogle Scholar
  61. 61.
    S.H. Noh, B. Han, T. Ohsaka, First-principles computational study of highly stable and active ternary PtCuNi nanocatalyst for oxygen reduction reaction. Nano Res. 8(10), 3394–3403 (2015)CrossRefGoogle Scholar
  62. 62.
    C.D. Taylor, M. Neurock, J.R. Scully, First-principles investigation of the fundamental corrosion properties of a model Cu38 nanoparticle and the (111), (113) surfaces. J. Electrochem. Soc. 155(8), C407–C414 (2008)CrossRefGoogle Scholar
  63. 63.
    I. Matanović, F.H. Garzon, N.J. Henson, Theoretical study of electrochemical processes on Pt−Ni alloys. J. Phys. Chem. C 115(21), 10640–10650 (2011)CrossRefGoogle Scholar
  64. 64.
    I. Matanović, P.R.C. Kent, F.H. Garzon, N.J. Henson, Density functional theory study of oxygen reduction activity on ultrathin platinum nanotubes. J. Phys. Chem. C 116(31), 16499–16510 (2012)CrossRefGoogle Scholar
  65. 65.
    I. Matanović, P.R.C. Kent, F.H. Garzon, N.J. Henson, Density functional study of the structure, stability and oxygen reduction activity of ultrathin platinum nanowires. J. Electrochem. Soc. 160(6), F548–F553 (2013)CrossRefGoogle Scholar
  66. 66.
    Y. Okamoto, Comparison of hydrogen atom adsorption on Pt clusters with that on Pt surfaces: a study from density-functional calculations. Chem. Phys. Lett. 429(1), 209–213 (2006)CrossRefGoogle Scholar
  67. 67.
    J.M. Seminario, L.A. Agapito, L. Yan, P.B. Balbuena, Density functional theory study of adsorption of OOH on Pt-based bimetallic clusters alloyed with Cr, Co, and Ni. Chem. Phys. Lett. 410(4–6), 275–281 (2005)CrossRefGoogle Scholar
  68. 68.
    G. Zanti, D. Peeters, DFT study of small palladium clusters Pdn and their interaction with a CO ligand (n = 1–9). Eur. J. Inorg. Chem. 2009(26), 3904–3911 (2009)CrossRefGoogle Scholar
  69. 69.
    Z. Lu, G. Xu, C. He, T. Wang, L. Yang, Z. Yang, D. Ma, Novel catalytic activity for oxygen reduction reaction on MnN4 embedded graphene: a dispersion-corrected density functional theory study. Carbon 84, 500–508 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Center of New Energy Materials and Technology, College of Chemistry and Chemical EngineeringSouthwest Petroleum UniversityChengduChina
  2. 2.School of Chemistry and Materials ScienceLudong UniversityYantaiChina
  3. 3.Beijing Key Laboratory for Catalysis and Separation, Department of Chemistry and Chemical Engineering, College of Environmental and Energy EngineeringBeijing University of TechnologyBeijingChina

Personalised recommendations