Reforming AMR

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10686)


Many recent proposals aim to simplify semantic representations, and Abstract Meaning Representation (AMR) comes from this tradition, but it is nevertheless quite expressive. Bos 2016 proposes a slightly reformed AMR for translation to first order logic. This paper proposes a different augmentation of AMR that is more easily provided, and a slightly different mapping to higher order and dynamic logic. The proposed augmentation can be, at least in most cases, easily computed from standard ‘unreformed’ AMR corpora. The mapping from this augmented AMR to logical representation is a finite state multi bottom up tree transduction.



Many thanks to the anonymous reviewers for their valuable suggestions.


  1. 1.
    Adler, I., Dell, H., Husfeldt, T., Larisch, L., Salfelder, F.: The parameterized algorithms and computational experiments challenge - Track A: Treewidth (2016).
  2. 2.
    Allen, J.F., Swift, M., de Beaumont, W.: Deep semantic analysis of text. In: ACL, SIGSEM Symposium on Semantics in Systems for Text Processing (STEP) (2008)Google Scholar
  3. 3.
    Artzi, Y., Lee, K., Zettlemoyer, L.: Broad-coverage CCG semantic parsing with AMR. In: 2015 Conference on Empirical Methods in Natural Language Processing, pp. 1699–1710 (2015)Google Scholar
  4. 4.
    Banarescu, L., Bonial, C., Cai, S., Georgescu, M., Griffitt, K., Hermjakob, U., Knight, K., Koehn, P., Palmer, M., Schneider, N.: Abstract meaning representation for sembanking. In: Proceedings of the 7th Linguistic Annotation Workshop and Interoperability with Discourse, pp. 178–186 (2013)Google Scholar
  5. 5.
    Banarescu, L., Bonial, C., Cai, S., Georgescu, M., Griffitt, K., Hermjakob, U., Knight, K., Koehn, P., Palmer, M., Schneider, N.: Abstract meaning representation 1.2.2 specification (2015). Accessed 18 Sept 2015
  6. 6.
    Bender, E.M., Flickinger, D., Oepen, S., Packard, W., Copestake, A.: Layers of interpretation: on grammar and compositionality. In: 11th International Conference on Computational Semantics, pp. 239–249 (2015)Google Scholar
  7. 7.
    Bienvenu, M., Kikot, S., Podolskii, V.: Tree-like queries in OWL 2 QL: succinctness and complexity results (2015).
  8. 8.
    Bonial, C., Babko-Malaya, O., Choi, J.D., Hwang, J., Palmer, M.: (2010)
  9. 9.
    Bos, J.: Expressive power of abstract meaning representations. Comput. Linguit. 42(3), 527–535 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Brasoveanu, A., Farkas, D.F.: How indefinites choose their scope. Linguist. Philos. 34, 1–55 (2011)CrossRefGoogle Scholar
  11. 11.
    Carpenter, B.: Type-Logical Semantics. MIT Press, Cambridge (1997)zbMATHGoogle Scholar
  12. 12.
    Champollion, L.: The interaction of compositional semantics and event semantics. Linguist. Philos. 38(1), 31–66 (2015)CrossRefGoogle Scholar
  13. 13.
    Chen, W.T., Palmer, M.: Unsupervised AMR-dependency parse alignment. In: 15th Conference of the European Chapter of the Association for Computational Linguistics (2017)Google Scholar
  14. 14.
    Copestake, A., Flickinger, D., Pollard, C., Sag, I.: Minimal recursion semantics: an introduction. Res. Lang. Comput. 3, 281–332 (2005)CrossRefGoogle Scholar
  15. 15.
    Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic. Cambridge University Press, New York (2012)CrossRefzbMATHGoogle Scholar
  16. 16.
    Engelfriet, J., Lilin, E., Maletti, A.: Composition and decomposition of extended multi bottom-up tree transducers. Acta Informatica 46(8), 561–590 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Flanigan, J., Thomson, S., Carbonell, J., Dyer, C., Smith, N.A.: A discriminative graph-based parser for the abstract meaning representation. In: Annual Meeting of the Association for Computational Linguistics (2014)Google Scholar
  18. 18.
    Fülöp, Z., Kühnemann, A., Vogler, H.: A bottom-up characterization of deterministic top-down tree transducers with regular look-ahead. Inf. Process. Lett. 91, 57–67 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Fülöp, Z., Kühnemann, A., Vogler, H.: Linear deterministic multi bottom-up tree transducers. Theor. Comput. Sci. 347, 276–287 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ganian, R., Hliněný, P., Kneis, J., Langer, A., Obdržálek, J., Rossmanith, P.: Digraph width measures in parameterized algorithmics. Discrete Appl. Math. 168, 88–107 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    de Groote, P.: Towards a Montagovian account of dynamics. In: Semantics and Linguistic Theory 16 (2006)Google Scholar
  22. 22.
    Heim, I.: The semantics of definite and indefinite noun phrases. Ph.D. thesis, University of Massachusetts, Amherst (1982)Google Scholar
  23. 23.
    Hobbs, J.R., Shieber, S.M.: An algorithm for generating quantifier scopings. Comput. Linguist. 13, 47–63 (1987)Google Scholar
  24. 24.
    Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to OWL: the making of a web ontology language. Web Semant. Sci. Serv. Agents World Wide Web 1, 7–26 (2003)CrossRefGoogle Scholar
  25. 25.
    Kamp, H.: A theory of truth and semantic representation. In: Groenendijk, G., Janssen, T., Stokhof, M. (eds.) Formal Methods in the Study of Language. Mathematisch Centrum, Amsterdam (1981)Google Scholar
  26. 26.
    Keenan, E.L.: Further beyond the Frege boundary. In: van der Does, J., van Eijck, J. (eds.) Quantifiers, Logic, and Language. CSLI Publications, Amsterdam (1996)Google Scholar
  27. 27.
    Knight, K., et al.: Abstract meaning representation (AMR) annotation release 1.0 (2014).,
  28. 28.
    Kratzer, A.: Scope or pseudoscope? Are there wide-scope indefinites? In: Rothstein, S. (ed.) Events and Grammar. Springer, Dordrecht (1998)Google Scholar
  29. 29.
    Landau, I.: Control in Generative Grammar: A Research Companion. Cambridge University Press, New York (2013)CrossRefGoogle Scholar
  30. 30.
    Landman, F.: Plurality. In: Lappin, S. (ed.) Handbook of Contemporary Semantic Theory, pp. 425–457. Oxford University Press, Oxford (1996)Google Scholar
  31. 31.
    Langekilde, I., Knight, K.: Generation that exploits corpus-based statistical knowledge. In: 36th Annual Meeting of the ACL, pp. 704–710 (1998)Google Scholar
  32. 32.
    Lebedeva, E.: Expression de la dynamique du discours a l’aide de continuations. Ph.D. thesis, Université de Lorraine (2012)Google Scholar
  33. 33.
    Maletti, A.: The power of weighted regularity-preserving multi bottom-up tree transducers. Int. J. Found. Comput. Sci. 26(7), 293–305 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Montague, R.: Pragmatics. In: Thomason, R.H. (ed.) Formal Philosophy: Selected papers of Richard Montague. Yale University Press, New Haven, 1968/1974Google Scholar
  35. 35.
    Morgenstern, L., Davis, E., Ortiz, C.L.: Planning, executing, and evaluating the Winograd schema challenge. AI Mag. 37(1), 50–54 (2016)CrossRefGoogle Scholar
  36. 36.
    Muskens, R.: Order-independence and underspecification. In: Kamp, H., Partee, B. (eds.) Context-dependence in the Analysis of Linguistic Meaning, pp. 239–254. Elsevier (2004)Google Scholar
  37. 37.
    Partee, B.H., Borschev, V.: Genitives, relational nouns, and argument-modifier ambiguity. In: Lang, E., Maienborn, C., Fabricius-Hansen, C. (eds.) Modifying Adjuncts, pp. 67–112. Mouton de Gruyter, Berlin (2003)Google Scholar
  38. 38.
    Peters, P.S., Westerståhl, D.: Quantifiers in Language and Logic. Oxford University Press, Oxford (2006)Google Scholar
  39. 39.
    Szabolcsi, A.: Quantification. Cambridge University Press, New York (2010)CrossRefGoogle Scholar
  40. 40.
    van Lambalgen, M., Hamm, F.: The Proper Treatment of Events. Blackwell, Oxford (2005)CrossRefzbMATHGoogle Scholar
  41. 41.
    Weischedel, R., Pradhan, S., Ramshaw, L., Kaufman, J., Franchini, M., El-Bachouti, M.: (2015)

Copyright information

© Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.University of CaliforniaLos AngelesUSA
  2. 2.Nuance CommunicationsSunnyvaleUSA

Personalised recommendations