MRI and Ultrasound Imaging of Nanoparticles for Medical Diagnosis

  • Or Perlman
  • Haim AzhariEmail author


Magnetic resonance imaging (MRI) and ultrasound (US) are two prominent medical imaging modalities. They are extensively and routinely used in various medical fields, such as cardiology, embryology, neurology, and oncology. In this chapter we describe the application of nanoparticles for MRI and US image enhancement. Moreover, the utilization of nano-scaled compounds for multimodal MRI-US imaging, allowing further increase of diagnosis certainty, is depicted.


  1. 1.
    Wolbarst AB, Hendee WR (2006) Evolving and experimental technologies in medical imaging. Radiology 238(1):16–39CrossRefGoogle Scholar
  2. 2.
    Smith-Bindman R, Miglioretti DL, Johnson E, Lee C et al (2012) Use of diagnostic imaging studies and associated radiation exposure for patients enrolled in large integrated health care systems, 1996–2010. JAMA 307(22):2400–2409CrossRefGoogle Scholar
  3. 3.
    Beckett KR, Moriarity AK, Langer JM (2015) Safe use of contrast media: what the radiologist needs to know. Radiographics 35(6):1738–1750CrossRefGoogle Scholar
  4. 4.
    Vandsburger MH, Epstein FH (2011) Emerging MRI methods in translational cardiovascular research. J Cardiovasc Transl Res 4(4):477–492CrossRefGoogle Scholar
  5. 5.
    Fidler JL, Guimaraes L, Einstein DM (2009) MR imaging of the small bowel 1. Radiographics 29(6):1811–1825CrossRefGoogle Scholar
  6. 6.
    Sun MR, Ngo L, Genega EM, Atkins MB et al (2009) Renal cell carcinoma: dynamic contrast-enhanced MR imaging for differentiation of tumor subtypes – correlation with pathologic findings 1. Radiology 250(3):793–802CrossRefGoogle Scholar
  7. 7.
    Farkas J, Christian P, Urrea JAG, Roos N et al (2010) Effects of silver and gold nanoparticles on rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquat Toxicol 96(1):44–52CrossRefGoogle Scholar
  8. 8.
    Bihari P, Vippola M, Schultes S, Praetner M et al (2008) Optimized dispersion of nanoparticles for biological in vitro and in vivo studies. Part Fibre Toxicol 5(1):14CrossRefGoogle Scholar
  9. 9.
    Mohanraj V, Chen Y (2006) Nanoparticles-a review. Trop J Pharm Res 5(1):561–573Google Scholar
  10. 10.
    Moreno-Manas M, Pleixats R (2003) Formation of carbon– carbon bonds under catalysis by transition-metal nanoparticles. Acc Chem Res 36(8):638–643CrossRefGoogle Scholar
  11. 11.
    Kayser O, Lemke A, Hernandez-Trejo N (2005) The impact of nanobiotechnology on the development of new drug delivery systems. Curr Pharm Biotechnol 6(1):3–5CrossRefGoogle Scholar
  12. 12.
    Wang AZ, Langer R, Farokhzad OC (2012) Nanoparticle delivery of cancer drugs. Annu Rev Med 63:185–198CrossRefGoogle Scholar
  13. 13.
    Hobbs SK, Monsky WL, Yuan F, Roberts WG et al (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci 95(8):4607–4612CrossRefGoogle Scholar
  14. 14.
    Fang J, Nakamura H, Maeda H (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63(3):136–151CrossRefGoogle Scholar
  15. 15.
    Li S-D, Huang L (2010) Stealth nanoparticles: high density but sheddable PEG is a key for tumor targeting. J Control Release 145(3):178CrossRefGoogle Scholar
  16. 16.
    Moore A, Marecos E, Bogdanov A Jr, Weissleder R (2000) Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model 1. Radiology 214(2):568–574CrossRefGoogle Scholar
  17. 17.
    Nune SK, Gunda P, Thallapally PK, Lin Y-Y et al (2009) Nanoparticles for biomedical imaging. Expert Opin Drug Deliv 6(11):1175–1194CrossRefGoogle Scholar
  18. 18.
    Li L, Gao F, Jiang W, Wu X et al (2016) Folic acid-conjugated superparamagnetic iron oxide nanoparticles for tumor-targeting MR imaging. Drug Deliv 23(5):1726–1733Google Scholar
  19. 19.
    Grenha A, Gomes ME, Rodrigues M, Santo VE et al (2010) Development of new chitosan/carrageenan nanoparticles for drug delivery applications. J Biomed Mater Res A 92(4):1265–1272Google Scholar
  20. 20.
    Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22(1):47–52CrossRefGoogle Scholar
  21. 21.
    Zhou L, Gu Z, Liu X, Yin W et al (2012) Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging. J Mater Chem 22(3):966–974CrossRefGoogle Scholar
  22. 22.
    Zhao Z, Zhou Z, Bao J, Wang Z et al (2013) Octapod iron oxide nanoparticles as high-performance T2 contrast agents for magnetic resonance imaging. Nat Commun 4:2266CrossRefGoogle Scholar
  23. 23.
    Baetke SC, Lammers T, Kiessling F (2015) Applications of nanoparticles for diagnosis and therapy of cancer. Br J Radiol 88(1054):20150207CrossRefGoogle Scholar
  24. 24.
    Popovtzer R, Agrawal A, Kotov NA, Popovtzer A et al (2008) Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett 8(12):4593–4596CrossRefGoogle Scholar
  25. 25.
    Yin T, Wang P, Zheng R, Zheng B et al (2012) Nanobubbles for enhanced ultrasound imaging of tumors. Int J Nanomedicine 7(2):895–904Google Scholar
  26. 26.
    Liu Y, Welch MJ (2012) Nanoparticles labeled with positron emitting nuclides: advantages, methods, and applications. Bioconjug Chem 23(4):671–682CrossRefGoogle Scholar
  27. 27.
    Polyák A, Hajdu I, Bodnár M, Trencsényi G et al (2013) 99m Tc-labelled nanosystem as tumour imaging agent for SPECT and SPECT/CT modalities. Int J Pharm 449(1):10–17CrossRefGoogle Scholar
  28. 28.
    Morana G, Salviato E, Guarise A (2007) Contrast agents for hepatic MRI. Cancer Imaging 7(Spec No A):S24–S27CrossRefGoogle Scholar
  29. 29.
    Louie A (2010) Multimodality imaging probes: design and challenges. Chem Rev (Washington, DC, United States) 110(5):3146–3195CrossRefGoogle Scholar
  30. 30.
    Deshpande N, Needles A, Willmann JK (2010) Molecular ultrasound imaging: current status and future directions. Clin Radiol 65(7):567–581CrossRefGoogle Scholar
  31. 31.
    Gao Z, Ma T, Zhao E, Docter D et al (2016) Small is smarter: nano MRI contrast agents–advantages and recent achievements. Small 12(5):556–576CrossRefGoogle Scholar
  32. 32.
    Lee D-E, Koo H, Sun I-C, Ryu JH et al (2012) Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem Soc Rev 41(7):2656–2672CrossRefGoogle Scholar
  33. 33.
    Albrecht T, Blomley M, Bolondi L, Claudon M et al (2004) Guidelines for the use of contrast agents in ultrasound. January 2004. Ultraschall Med 25(04):249–256CrossRefGoogle Scholar
  34. 34.
    Chang PH, Shun K, Wu S-J, Levene HB (1995) Second harmonic imaging and harmonic Doppler measurements with Albunex. IEEE Trans Ultrason Ferroelectr Freq Control 42(6):1020–1027CrossRefGoogle Scholar
  35. 35.
    Calliada F, Campani R, Bottinelli O, Bozzini A et al (1998) Ultrasound contrast agents: basic principles. Eur J Radiol 27:S157–S160CrossRefGoogle Scholar
  36. 36.
    Blomley MJ, Cooke JC, Unger EC, Monaghan MJ et al (2001) Microbubble contrast agents: a new era in ultrasound. Br Med J 322(7296):1222CrossRefGoogle Scholar
  37. 37.
    Potdevin T, Fowlkes J, Moskalik A, Carson P (2004) Analysis of refill curve shape in ultrasound contrast agent studies. Med Phys 31(3):623–632CrossRefGoogle Scholar
  38. 38.
    Claudon M, Dietrich CF, Choi BI, Cosgrove DO et al (2013) Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (CEUS) in the liver–update 2012. Ultraschall Med 34(01):11–29Google Scholar
  39. 39.
    Wang C-H, Huang Y-F, Yeh C-K (2011) Aptamer-conjugated nanobubbles for targeted ultrasound molecular imaging. Langmuir 27(11):6971–6976CrossRefGoogle Scholar
  40. 40.
    Fan X, Wang L, Guo Y, Tong H et al (2013) Experimental investigation of the penetration of ultrasound nanobubbles in a gastric cancer xenograft. Nanotechnology 24(32):325102CrossRefGoogle Scholar
  41. 41.
    Cai WB, Yang HL, Zhang J, Yin JK et al (2015) The optimized fabrication of nanobubbles as ultrasound contrast agents for tumor imaging. Sci Rep 5:13725CrossRefGoogle Scholar
  42. 42.
    Yang H, Cai W, Xu L, Lv X et al (2015) Nanobubble–affibody: novel ultrasound contrast agents for targeted molecular ultrasound imaging of tumor. Biomaterials 37:279–288CrossRefGoogle Scholar
  43. 43.
    Tong H-P, Wang L-F, Guo Y-L, Li L et al (2013) Preparation of protamine cationic nanobubbles and experimental study of their physical properties and in vivo contrast enhancement. Ultrasound Med Biol 39(11):2147–2157CrossRefGoogle Scholar
  44. 44.
    Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3(3):1377–1397CrossRefGoogle Scholar
  45. 45.
    Néstor M-M, Kei N-PE, Guadalupe N-AM, Elisa M-ES et al (2011) Preparation and in vitro evaluation of poly (D, L-lactide-co-glycolide) air-filled nanocapsules as a contrast agent for ultrasound imaging. Ultrasonics 51(7):839–845CrossRefGoogle Scholar
  46. 46.
    Zhang X, Zheng Y, Wang Z, Huang S et al (2014) Methotrexate-loaded PLGA nanobubbles for ultrasound imaging and synergistic targeted therapy of residual tumor during HIFU ablation. Biomaterials 35(19):5148–5161CrossRefGoogle Scholar
  47. 47.
    Krupka TM, Solorio L, Wilson RE, Wu H et al (2009) Formulation and characterization of echogenic lipid– pluronic nanobubbles. Mol Pharm 7(1):49–59CrossRefGoogle Scholar
  48. 48.
    Wu H, Rognin NG, Krupka TM, Solorio L et al (2013) Acoustic characterization and pharmacokinetic analyses of new nanobubble ultrasound contrast agents. Ultrasound Med Biol 39(11):2137–2146CrossRefGoogle Scholar
  49. 49.
    Shapiro MG, Goodwill PW, Neogy A, Yin M et al (2014) Biogenic gas nanostructures as ultrasonic molecular reporters. Nat Nanotechnol 9(4):311–316CrossRefGoogle Scholar
  50. 50.
    Sheeran PS, Wong VP, Luois S, McFarland RJ et al (2011) Decafluorobutane as a phase-change contrast agent for low-energy extravascular ultrasonic imaging. Ultrasound Med Biol 37(9):1518–1530CrossRefGoogle Scholar
  51. 51.
    Díaz-López R, Tsapis N, Santin M, Bridal SL et al (2010) The performance of PEGylated nanocapsules of perfluorooctyl bromide as an ultrasound contrast agent. Biomaterials 31(7):1723–1731CrossRefGoogle Scholar
  52. 52.
    Peyman SA, McLaughlan JR, Abou-Saleh RH, Marston G et al (2016) On-chip preparation of nanoscale contrast agents towards high-resolution ultrasound imaging. Lab Chip 16(4):679–687CrossRefGoogle Scholar
  53. 53.
    Liu J, Shang T, Wang F, Cao Y et al (2017) Low-intensity focused ultrasound (LIFU)-induced acoustic droplet vaporization in phase-transition perfluoropentane nanodroplets modified by folate for ultrasound molecular imaging. Int J Nanomedicine 12:911CrossRefGoogle Scholar
  54. 54.
    Nguyen AT, Wrenn SP (2014) Acoustically active liposome-nanobubble complexes for enhanced ultrasonic imaging and ultrasound-triggered drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 6(3):316–325CrossRefGoogle Scholar
  55. 55.
    Raymond JL, Luan Y, Peng T, Huang S-L et al (2016) Loss of gas from echogenic liposomes exposed to pulsed ultrasound. Phys Med Biol 61(23):8321CrossRefGoogle Scholar
  56. 56.
    Liang H, Blomley M (2003) The role of ultrasound in molecular imaging. Br J Radiol 76:S140CrossRefGoogle Scholar
  57. 57.
    Kopechek JA, Haworth KJ, Raymond JL, Douglas Mast T et al (2011) Acoustic characterization of echogenic liposomes: frequency-dependent attenuation and backscatter. J Acoust Soc Am 130(5):3472–3481CrossRefGoogle Scholar
  58. 58.
    Radhakrishnan K, Haworth KJ, Huang S-L, Klegerman ME et al (2012) Stability of echogenic liposomes as a blood pool ultrasound contrast agent in a physiologic flow phantom. Ultrasound Med Biol 38(11):1970–1981CrossRefGoogle Scholar
  59. 59.
    Kim H, Moody MR, Laing ST, Kee PH et al (2010) In vivo volumetric intravascular ultrasound visualization of early/inflammatory arterial atheroma using targeted echogenic immunoliposomes. Investig Radiol 45(10):685CrossRefGoogle Scholar
  60. 60.
    Laing ST, Moody M, Smulevitz B, Kim H et al (2011) Ultrasound-enhanced thrombolytic effect of tissue plasminogen activator–loaded echogenic liposomes in an in vivo rabbit aorta thrombus model – brief report. Arterioscler Thromb Vasc Biol 31(6):1357–1359CrossRefGoogle Scholar
  61. 61.
    Kang E, Min HS, Lee J, Han MH et al (2010) Nanobubbles from gas-generating polymeric nanoparticles: ultrasound imaging of living subjects. Angew Chem Int Ed 49(3):524–528CrossRefGoogle Scholar
  62. 62.
    Olson ES, Orozco J, Wu Z, Malone CD et al (2013) Toward in vivo detection of hydrogen peroxide with ultrasound molecular imaging. Biomaterials 34(35):8918–8924CrossRefGoogle Scholar
  63. 63.
    Kang C, Cho W, Park M, Kim J et al (2016) H2O2-triggered bubble generating antioxidant polymeric nanoparticles as ischemia/reperfusion targeted nanotheranostics. Biomaterials 85:195–203CrossRefGoogle Scholar
  64. 64.
    Kim M, Lee JH, Kim SE, Kang SS et al (2016) Nanosized ultrasound enhanced-contrast agent for in vivo tumor imaging via intravenous injection. ACS Appl Mater Interfaces 8(13):8409–8418CrossRefGoogle Scholar
  65. 65.
    Liu J, Levine AL, Mattoon JS, Yamaguchi M et al (2006) Nanoparticles as image enhancing agents for ultrasonography. Phys Med Biol 51(9):2179CrossRefGoogle Scholar
  66. 66.
    Liu J, Li J, Rosol TJ, Pan X et al (2007) Biodegradable nanoparticles for targeted ultrasound imaging of breast cancer cells in vitro. Phys Med Biol 52(16):4739CrossRefGoogle Scholar
  67. 67.
    Ji Y, Li X-T, Chen G-Q (2008) Interactions between a poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) terpolyester and human keratinocytes. Biomaterials 29(28):3807–3814CrossRefGoogle Scholar
  68. 68.
    Liberman A, Martinez HP, Ta CN, Barback CV et al (2012) Hollow silica and silica-boron nano/microparticles for contrast-enhanced ultrasound to detect small tumors. Biomaterials 33(20):5124–5129CrossRefGoogle Scholar
  69. 69.
    Liberman A, Wu Z, Barback CV, Viveros R et al (2013) Color doppler ultrasound and gamma imaging of intratumorally injected 500 nm iron–silica nanoshells. ACS Nano 7(7):6367–6377CrossRefGoogle Scholar
  70. 70.
    Foroutan F, Jokerst JV, Gambhir SS, Vermesh O et al (2015) Sol–gel synthesis and electrospraying of biodegradable (P2O5) 55–(CaO) 30–(Na2O) 15 glass nanospheres as a transient contrast agent for ultrasound stem cell imaging. ACS Nano 9(2):1868–1877CrossRefGoogle Scholar
  71. 71.
    Delogu LG, Vidili G, Venturelli E, Ménard-Moyon C et al (2012) Functionalized multiwalled carbon nanotubes as ultrasound contrast agents. Proc Natl Acad Sci 109(41):16612–16617CrossRefGoogle Scholar
  72. 72.
    Lee GH, Chang Y (2015) Magnetic properties, water proton relaxivities, and in-vivo MR images of paramagnetic nanoparticles. J Korean Phys Soc 67(1):44–51CrossRefGoogle Scholar
  73. 73.
    Weissleder R (1994) Liver MR imaging with iron oxides: toward consensus and clinical practice. Radiology 193(3):593–595CrossRefGoogle Scholar
  74. 74.
    Raymond KN, Pierre VC (2005) Next generation, high relaxivity gadolinium MRI agents. Bioconjug Chem 16(1):3–8CrossRefGoogle Scholar
  75. 75.
    Kuo PH, Kanal E, Abu-Alfa AK, Cowper SE (2007) Gadolinium-based MR contrast agents and nephrogenic systemic fibrosis 1. Radiology 242(3):647–649CrossRefGoogle Scholar
  76. 76.
    Pan D, Caruthers SD, Senpan A, Schmieder AH et al (2011) Revisiting an old friend: manganese-based MRI contrast agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3(2):162–173CrossRefGoogle Scholar
  77. 77.
    Amsalem Y, Mardor Y, Feinberg MS, Landa N et al (2007) Iron-oxide labeling and outcome of transplanted mesenchymal stem cells in the infarcted myocardium. Circulation 116(Suppl 11):I-38–I-45Google Scholar
  78. 78.
    Bar-Shir A, Avram L, Yariv-Shoushan S, Anaby D et al (2014) Alginate-coated magnetic nanoparticles for noninvasive MRI of extracellular calcium. NMR Biomed 27(7):774–783CrossRefGoogle Scholar
  79. 79.
    Temme S, Grapentin C, Quast C, Jacoby C et al (2015) Non-invasive imaging of early venous thrombosis by 19F MRI using targeted perfluorocarbon nanoemulsions. Circulation.
  80. 80.
    Lesniak WG, Oskolkov N, Song X, Lal B et al (2016) Salicylic acid conjugated dendrimers are a tunable, high performance CEST MRI NanoPlatform. Nano Lett 16(4):2248–2253CrossRefGoogle Scholar
  81. 81.
    Faucher L, Tremblay Ml, Lagueux J, Gossuin Y et al (2012) Rapid synthesis of PEGylated ultrasmall gadolinium oxide nanoparticles for cell labeling and tracking with MRI. ACS Appl Mater Interfaces 4(9):4506–4515CrossRefGoogle Scholar
  82. 82.
    Fang J, Chandrasekharan P, Liu X-L, Yang Y et al (2014) Manipulating the surface coating of ultra-small Gd2O3 nanoparticles for improved T 1-weighted MR imaging. Biomaterials 35(5):1636–1642CrossRefGoogle Scholar
  83. 83.
    Bertini I, Bianchini F, Calorini L, Colagrande S et al (2004) Persistent contrast enhancement by sterically stabilized paramagnetic liposomes in murine melanoma. Magn Reson Med 52(3):669–672CrossRefGoogle Scholar
  84. 84.
    Chen H, Wang GD, Tang W, Todd T et al (2014) Gd-encapsulated carbonaceous dots with efficient renal clearance for magnetic resonance imaging. Adv Mater (Weinheim, Germany) 26(39):6761–6766CrossRefGoogle Scholar
  85. 85.
    Perera VS, Chen G, Cai Q, Huang SD (2016) Nanoparticles of gadolinium-incorporated Prussian blue with PEG coating as an effective oral MRI contrast agent for gastrointestinal tract imaging. Analyst 141(6):2016CrossRefGoogle Scholar
  86. 86.
    Na HB, Lee JH, An K, Park YI et al (2007) Development of a T1 contrast agent for magnetic resonance imaging using MnO nanoparticles. Angew Chem 119(28):5493–5497CrossRefGoogle Scholar
  87. 87.
    Kim T, Momin E, Choi J, Yuan K et al (2011) Mesoporous silica-coated hollow manganese oxide nanoparticles as positive T 1 contrast agents for labeling and MRI tracking of adipose-derived mesenchymal stem cells. J Am Chem Soc 133(9):2955–2961CrossRefGoogle Scholar
  88. 88.
    An K, Na HB, Park YI, Choi SH et al (2015) Hollow MnOxPy and Pt/MnOxPy yolk/shell nanoparticles as a T 1 MRI contrast agent. J Colloid Interface Sci 439:134–138CrossRefGoogle Scholar
  89. 89.
    Kanakia S, Toussaint J, Hoang DM, Lee S et al (2014) Towards an advanced graphene-based magnetic resonance imaging contrast agent: sub-acute toxicity and efficacy studies in small animals. Sci Rep 5:17182–17182CrossRefGoogle Scholar
  90. 90.
    Bao G, Mitragotri S, Tong S (2013) Multifunctional nanoparticles for drug delivery and molecular imaging. Annu Rev Biomed Eng 15:253–282CrossRefGoogle Scholar
  91. 91.
    Wu Y, Briley K, Tao X (2015) Nanoparticle-based imaging of inflammatory bowel disease. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8:300–315Google Scholar
  92. 92.
    Raynal I, Prigent P, Peyramaure S, Najid A et al (2004) Macrophage endocytosis of superparamagnetic iron oxide nanoparticles: mechanisms and comparison of ferumoxides and ferumoxtran-10. Investig Radiol 39(1):56–63CrossRefGoogle Scholar
  93. 93.
    Van Beers B, Gallez B, Pringot J (1997) Contrast-enhanced MR imaging of the liver. Radiology 203(2):297–306CrossRefGoogle Scholar
  94. 94.
    Frericks BB, Wacker F, Loddenkemper C, Valdeig S et al (2009) Magnetic resonance imaging of experimental inflammatory bowel disease: quantitative and qualitative analyses with histopathologic correlation in a rat model using the ultrasmall iron oxide SHU 555 C. Investig Radiol 44(1):23–30CrossRefGoogle Scholar
  95. 95.
    Wu Y, Briley-Saebo K, Xie J, Zhang R et al (2014) Inflammatory bowel disease: MR-and SPECT/CT-based macrophage imaging for monitoring and evaluating disease activity in experimental mouse model – pilot study. Radiology 271(2):400–407CrossRefGoogle Scholar
  96. 96.
    Neuwelt A, Sidhu N, Hu C-AA, Mlady G et al (2015) Iron-based superparamagnetic nanoparticle contrast agents for MRI of infection and inflammation. Am J Roentgenol 204(3):W302–W313CrossRefGoogle Scholar
  97. 97.
    Aryal S, Key J, Stigliano C, Ananta JS et al (2013) Engineered magnetic hybrid nanoparticles with enhanced relaxivity for tumor imaging. Biomaterials 34(31):7725–7732CrossRefGoogle Scholar
  98. 98.
    Aghighi M, Golovko D, Ansari C, Marina NM et al (2015) Imaging tumor necrosis with ferumoxytol. PLoS One 10(11):e0142665CrossRefGoogle Scholar
  99. 99.
    Bashir MR, Bhatti L, Marin D, Nelson RC (2015) Emerging applications for ferumoxytol as a contrast agent in MRI. J Magn Reson Imaging 41(4):884–898CrossRefGoogle Scholar
  100. 100.
    Klenk C, Gawande R, Uslu L, Khurana A et al (2014) Ionising radiation-free whole-body MRI versus 18 F-fluorodeoxyglucose PET/CT scans for children and young adults with cancer: a prospective, non-randomised, single-centre study. Lancet Oncol 15(3):275–285CrossRefGoogle Scholar
  101. 101.
    Cunningham CH, Arai T, Yang PC, McConnell MV et al (2005) Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles. Magn Reson Med 53(5):999–1005CrossRefGoogle Scholar
  102. 102.
    Zhao Q, Langley J, Lee S, Liu W (2011) Positive contrast technique for the detection and quantification of superparamagnetic iron oxide nanoparticles in MRI. NMR Biomed 24(5):464–472CrossRefGoogle Scholar
  103. 103.
    Wang L, Zhong X, Qian W, Huang J et al (2014) Ultrashort echo time (UTE) imaging of receptor targeted magnetic iron oxide nanoparticles in mouse tumor models. J Magn Reson Imaging 40(5):1071–1081CrossRefGoogle Scholar
  104. 104.
    Zhu B, Witzel T, Jiang S, Huang SY et al (2016) Selective magnetic resonance imaging of magnetic nanoparticles by acoustically induced rotary saturation. Magn Reson Med 75(1):97–106CrossRefGoogle Scholar
  105. 105.
    Yang H-W, Huang C-Y, Lin C-W, Liu H-L et al (2014) Gadolinium-functionalized nanographene oxide for combined drug and microRNA delivery and magnetic resonance imaging. Biomaterials 35(24):6534–6542CrossRefGoogle Scholar
  106. 106.
    Cui Y, Zhang C, Luo R, Liu H et al (2016) Noninvasive monitoring of early antiangiogenic therapy response in human nasopharyngeal carcinoma xenograft model using MrI with rgD-conjugated ultrasmall superparamagnetic iron oxide nanoparticles. Int J Nanomedicine 11:5671CrossRefGoogle Scholar
  107. 107.
    Yuan Y, Ding Z, Qian J, Zhang J et al (2016) Casp3/7-instructed intracellular aggregation of Fe3O4 nanoparticles enhances T2 MR imaging of tumor apoptosis. Nano Lett 16(4):2686–2691CrossRefGoogle Scholar
  108. 108.
    Zhang H, Li J, Hu Y, Shen M et al (2016) Folic acid-targeted iron oxide nanoparticles as contrast agents for magnetic resonance imaging of human ovarian cancer. J Ovarian Res 9(1):19CrossRefGoogle Scholar
  109. 109.
    Chaudhary R, Roy K, Kanwar RK, Walder K et al (2016) Engineered atherosclerosis-specific zinc ferrite nanocomplex-based MRI contrast agents. J Nanobiotechnol 14(1):6CrossRefGoogle Scholar
  110. 110.
    Dósa E, Guillaume DJ, Haluska M, Lacy CA et al (2010) Magnetic resonance imaging of intracranial tumors: intra-patient comparison of gadoteridol and ferumoxytol. Neuro Oncol 13:251. Scholar
  111. 111.
    Cheng KK, Chan PS, Fan S, Kwan SM et al (2015) Curcumin-conjugated magnetic nanoparticles for detecting amyloid plaques in Alzheimer’s disease mice using magnetic resonance imaging (MRI). Biomaterials 44:155–172CrossRefGoogle Scholar
  112. 112.
    Pouw JJ, Grootendorst MR, Bezooijen R, Klazen CA et al (2015) Pre-operative sentinel lymph node localization in breast cancer with superparamagnetic iron oxide MRI: the SentiMAG multicentre trial imaging subprotocol. Br J Radiol 88(1056):20150634CrossRefGoogle Scholar
  113. 113.
    Cowger TA, Tang W, Zhen Z, Hu K et al (2015) Casein-coated Fe5C2 nanoparticles with superior r2 relaxivity for liver-specific magnetic resonance imaging. Theranostics 5(11):1225CrossRefGoogle Scholar
  114. 114.
    Liu F, Le W, Mei T, Wang T et al (2016) In vitro and in vivo targeting imaging of pancreatic cancer using a Fe3O4@ SiO2 nanoprobe modified with anti-mesothelin antibody. Int J Nanomedicine 11:2195Google Scholar
  115. 115.
    Huang J, Qian W, Wang L, Wu H et al (2016) Functionalized milk-protein-coated magnetic nanoparticles for MRI-monitored targeted therapy of pancreatic cancer. Int J Nanomedicine 11:3087Google Scholar
  116. 116.
    Jeon TY, Kim JH, Im GH, Kim J-H et al (2016) Hollow manganese oxide nanoparticle-enhanced MRI of hypoxic-ischaemic brain injury in the neonatal rat. Br J Radiol 89(1067):20150806CrossRefGoogle Scholar
  117. 117.
    Luo Y, Yang J, Li J, Yu Z et al (2015) Facile synthesis and functionalization of manganese oxide nanoparticles for targeted T1-weighted tumor MR imaging. Colloids Surf B: Biointerfaces 136:506–513CrossRefGoogle Scholar
  118. 118.
    Huang H, Yue T, Xu K, Golzarian J et al (2015) Fabrication and evaluation of tumor-targeted positive MRI contrast agent based on ultrasmall MnO nanoparticles. Colloids Surf B: Biointerfaces 131:148–154CrossRefGoogle Scholar
  119. 119.
    Kuo Y-T, Chen C-Y, Liu G-C, Wang Y-M (2016) Development of bifunctional gadolinium-labeled superparamagnetic nanoparticles (Gd-MnMEIO) for in vivo MR imaging of the liver in an animal model. PLoS One 11(2):e0148695CrossRefGoogle Scholar
  120. 120.
    Vu-Quang H, Vinding MS, Xia D, Nielsen T et al (2016) Chitosan-coated poly (lactic-co-glycolic acid) perfluorooctyl bromide nanoparticles for cell labeling in 19 F magnetic resonance imaging. Carbohydr Polym 136:936–944CrossRefGoogle Scholar
  121. 121.
    Duan L, Yang F, Song L, Fang K et al (2015) Controlled assembly of magnetic nanoparticles on microbubbles for multimodal imaging. Soft Matter 11(27):5492–5500CrossRefGoogle Scholar
  122. 122.
    Xu S, Yang F, Zhou X, Zhuang Y et al (2015) Uniform PEGylated PLGA microcapsules with embedded Fe3O4 nanoparticles for US/MR dual-modality imaging. ACS Appl Mater Interfaces 7(36):20460–20468CrossRefGoogle Scholar
  123. 123.
    Song S, Guo H, Jiang Z, Jin Y et al (2015) Self-assembled microbubbles as contrast agents for ultrasound/magnetic resonance dual-modality imaging. Acta Biomater 24:266–278CrossRefGoogle Scholar
  124. 124.
    Niu C, Wang Z, Lu G, Krupka TM et al (2013) Doxorubicin loaded superparamagnetic PLGA-iron oxide multifunctional microbubbles for dual-mode US/MR imaging and therapy of metastasis in lymph nodes. Biomaterials 34(9):2307–2317CrossRefGoogle Scholar
  125. 125.
    Huang H-Y, Hu S-H, Hung S-Y, Chiang C-S et al (2013) SPIO nanoparticle-stabilized PAA-F127 thermosensitive nanobubbles with MR/US dual-modality imaging and HIFU-triggered drug release for magnetically guided in vivo tumor therapy. J Control Release 172(1):118–127CrossRefGoogle Scholar
  126. 126.
    Xu B, Dou H, Tao K, Sun K et al (2011) “Two-in-one” fabrication of Fe3O4/MePEG-PLA composite nanocapsules as a potential ultrasonic/MRI dual contrast agent. Langmuir 27(19):12134–12142CrossRefGoogle Scholar
  127. 127.
    Zhao Y, Song W, Wang D, Ran H et al (2015) Phase-shifted PFH@ PLGA/Fe3O4 nanocapsules for MRI/US imaging and photothermal therapy with near-infrared irradiation. ACS Appl Mater Interfaces 7(26):14231–14242CrossRefGoogle Scholar
  128. 128.
    Cheng X, Li H, Chen Y, Luo B et al (2013) Ultrasound-triggered phase transition sensitive magnetic fluorescent nanodroplets as a multimodal imaging contrast agent in rat and mouse model. PLoS One 8(12):e85003CrossRefGoogle Scholar
  129. 129.
    Kempen PJ, Greasley S, Parker KA, Campbell JL et al (2015) Theranostic mesoporous silica nanoparticles biodegrade after pro-survival drug delivery and ultrasound/magnetic resonance imaging of stem cells. Theranostics 5(6):631CrossRefGoogle Scholar
  130. 130.
    Nolte I, Vince GH, Maurer M, Herbold C et al (2005) Iron particles enhance visualization of experimental gliomas with high-resolution sonography. Am J Neuroradiol 26(6):1469–1474Google Scholar
  131. 131.
    Linker R, Kroner A, Horn T, Gold R et al (2006) Iron particle–enhanced visualization of inflammatory central nervous system lesions by high resolution: preliminary data in an animal model. Am J Neuroradiol 27(6):1225–1229Google Scholar
  132. 132.
    Oh J, Feldman MD, Kim J, Condit C et al (2006) Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound. Nanotechnology 17(16):4183CrossRefGoogle Scholar
  133. 133.
    Mehrmohammadi M, Oh J, Mallidi S, Emelianov SY (2011) Pulsed magneto-motive ultrasound imaging using ultrasmall magnetic nanoprobes. Mol Imaging 10(2):102. Scholar
  134. 134.
    Evertsson M, Kjellman P, Cinthio M, Fredriksson S et al (2014) Multimodal detection of iron oxide nanoparticles in rat lymph nodes using magnetomotive ultrasound imaging and magnetic resonance imaging. IEEE Trans Ultrason Ferroelectr Freq Control 61(8):1276–1283CrossRefGoogle Scholar
  135. 135.
    Perlman O, Azhari H (2017) Ultrasonic computed tomography imaging of iron oxide nanoparticles. Phys Med Biol 62(3):825CrossRefGoogle Scholar
  136. 136.
    Perlman O, Weitz IS, Azhari H (2015) Copper oxide nanoparticles as contrast agents for MRI and ultrasound dual-modality imaging. Phys Med Biol 60(15):5767CrossRefGoogle Scholar
  137. 137.
    An L, Hu H, Du J, Wei J et al (2014) Paramagnetic hollow silica nanospheres for in vivo targeted ultrasound and magnetic resonance imaging. Biomaterials 35(20):5381–5392CrossRefGoogle Scholar
  138. 138.
    Barnett BP, Ruiz-Cabello J, Hota P, Ouwerkerk R et al (2011) Use of perfluorocarbon nanoparticles for non-invasive multimodal cell tracking of human pancreatic islets. Contrast Media Mol Imaging 6(4):251–259CrossRefGoogle Scholar
  139. 139.
    Thakor AS, Jokerst JV, Ghanouni P, Campbell JL et al (2016) Clinically approved nanoparticle imaging agents. J Nucl Med 57(12):1833–1837CrossRefGoogle Scholar
  140. 140.
    Scheinberg DA, Grimm J, Heller DA, Stater EP et al (2017) Advances in the clinical translation of nanotechnology. Curr Opin Biotechnol 46:66–73CrossRefGoogle Scholar
  141. 141.
    Kiessling F, Mertens ME, Grimm J, Lammers T (2014) Nanoparticles for imaging: top or flop? Radiology 273(1):10–28CrossRefGoogle Scholar
  142. 142.
    Gu FX, Karnik R, Wang AZ, Alexis F et al (2007) Targeted nanoparticles for cancer therapy. Nano Today 2(3):14–21CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringTechnion – Israel Institute of TechnologyHaifaIsrael

Personalised recommendations