Label-Free Raman Imaging

  • Alison J. HobroEmail author
  • Nicholas I. Smith


Label-free Raman imaging is a noninvasive spectroscopic method for investigating the nature and distribution of molecular species within a sample. In this chapter, we describe the applications of conventional Raman imaging, as well as the related techniques of coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) imaging for medical, life sciences, and other biological applications.


  1. 1.
    Smith E, Dent G (2005) Modern Raman spectroscopy a practical approach. Wiley, ChichesterGoogle Scholar
  2. 2.
    Grasselli JG, Snavely MK, Bulkin BJ (1980) Applications of Raman spectroscopy. Phys Rep 65(4):231–344CrossRefGoogle Scholar
  3. 3.
    Mantsch HH (2013) The road to medical vibrational spectroscopy – a history. Analyst 138(14):3863–3870CrossRefGoogle Scholar
  4. 4.
    Edwards HGM (2009) Raman spectroscopy of inorganic materials in art and archaeology: spectroscopic analysis of historical mysteries. In: Yarwood J, Douthwaite R, Duckett SB (eds) Spectroscopic properties of inorganic and organometallic compounds. Techniques, materials and applications. RSC Publishing, Cambridge, UKGoogle Scholar
  5. 5.
    Pully VV, Lenferink ATM, Otto C (2011) Time lapse Raman imaging of single live lymphocytes. J Raman Spectrosc 42(2):167–173CrossRefGoogle Scholar
  6. 6.
    Okada M, Smith NI, Palonpon AF, Endo H, Kawata S, Sodeoka M, Fujita K (2012) Label-free Raman observation of cytochrome C dynamics during apoptosis. Proc Natl Acad Sci U S A 109(1):28–32CrossRefGoogle Scholar
  7. 7.
    Hashimoto A, Yamaguchi Y, Chiu L-d, Morimoto C, Fujita K, Takedachi M, Kawata S, Murakami S, Tamiya E (2015) Time-lapse imaging of osteoblast differentiation. Sci Rep 5:12529CrossRefGoogle Scholar
  8. 8.
    Yamakoshi H, Dodo K, Palonpon A, Ando J, Fujita K, Kawata S, Sodeoka M (2012) Alkene-tag Raman imaging for visualisation of mobile small molecules in living cells. J Am Chem Soc 134(51):20681–20689CrossRefGoogle Scholar
  9. 9.
    Ando J, Fujita K (2013) Metallic nanoparticles as SERS agents for biomolecular imaging. Curr Pharm Biotechnol 14(2):141–149Google Scholar
  10. 10.
    Laing S, Gracie K, Faulds K (2016) Multiplex in vitro detection using SERS. Chem Soc Rev 45(7):1901–1918CrossRefGoogle Scholar
  11. 11.
    Lane LA, Qian X, Nie S (2015) SERS nanoparticles in medicine: from label-free detection to spectroscopic tagging. Chem Rev 115(19):10489–10529CrossRefGoogle Scholar
  12. 12.
    Baker MJ, Hussain SR, Lovergne L, Untereiner V, Hughes C, Lukaszewski RA, Thiėfin G, Sockalingum GD (2016) Developing and understanding biofluid vibrational spectroscopy: a critical review. Chem Soc Rev 143:2238–2247Google Scholar
  13. 13.
    Gamsjaeger S, Mendelsohn R, Boskey AL, Gourion-Arsiquaud S, Klaushofer K, Paschalis EP (2014) Vibrational spectroscopic imaging for the evaluation of matrix and mineral chemistry. Curr Osteoporos Rep 12(4):454–464CrossRefGoogle Scholar
  14. 14.
    Butler HJ, Ashton L, Bird B, Cinque G, Curtis K, Dorney J, Esmonde-White K, Fullwood NJ, Gardner B, Martin-Hirsch PL, Walsh MJ, McAinsh MR, Stone N, Martin FL (2016) Using Raman spectroscopy to characterise biological materials. Nat Protoc 11:664–687CrossRefGoogle Scholar
  15. 15.
    Zhang G, Senak L, Moore DJ (2011) Measuring changes in chemistry, composition and molecular structure within hair fibres by infrared and Raman spectroscopic imaging. J Biomed Opt 16(5):056009CrossRefGoogle Scholar
  16. 16.
    Teodori L, Crupi A, Costa A, Diaspro A, Melzer S, Tarnok A (2017) Three-dimensional imaging technologies: a priority for the advancement of tissue engineering and a challenge for the imaging community. J Biophotonics 10(1):24–45CrossRefGoogle Scholar
  17. 17.
    Yue S, Cárdenas-Mora JM, Chaboub LS, Lelièvre SA, Cheng J-X (2012) Label-free analysis of breast tissue polarity by Raman imaging of lipid phase. Biophys J 102(5):1215–1223CrossRefGoogle Scholar
  18. 18.
    Charwat V, Schütze K, Holnthoner W, Lavrentieva A, Gangnus R, Hofbauer P, Hoffmann C, Angres B, Kasper C (2015) Potential and limitations of microscopy and Raman spectroscopy for live cell analysis of 3D cultures. J Biotechnol 205:70–81CrossRefGoogle Scholar
  19. 19.
    Draux F, Gobinet C, Sulé-Suso J, Trussardi A, Manfait M, Jeannesson P, Sockalingum GD (2010) Raman spectral imaging of single cancer cells: probing the impact of sample fixation methods. Anal Bioanal Chem 397(7):2727–2737CrossRefGoogle Scholar
  20. 20.
    Hobro AJ, Smith NI (2017) An evaluation of fixation methods: spatial and compositional cellular changes observed by Raman imaging. Vib Spectrosc 91:31–45CrossRefGoogle Scholar
  21. 21.
    Bogliolo L, Murrone O, Piccinini M, Ariu F, Ledda S, Tilocca S, Albertini DF (2015) Evaluation of the impact of vitrification on the actin cytoskeleton of in vitro matured ovine oocytes by means of Raman microspectroscopy. J Assist Reprod Genet 32(2):185–193CrossRefGoogle Scholar
  22. 22.
    Gaifulina R, Maher AT, Kendall C, Nelson J, Rodriguez-Justo M, Lau K, Thomas GM (2016) Label-free Raman spectroscopic imaging to extract morphological and chemical information from a formalin-fixed, paraffin-embedded rat colon tissue section. Int J Exp Pathol 97(4):337–350CrossRefGoogle Scholar
  23. 23.
    Ali SM, Bonnier F, Tfayli A, Lambkin H, Flynn K, McDonagh V, Healy C, Lee TC, Lyng FM, Byrne HJ (2013) Raman spectroscopic analysis of human skin tissue sections ex-vivo: evaluating the effects of tissue processing and dewaxing. J Biomed Opt 18(6):061202CrossRefGoogle Scholar
  24. 24.
    Ali SM, Bonnier F, Lambkin H, Flynn K, McDonagh V, Healy C, Lee TC, Lyng FM, Byrne HJ (2013) A comparison of Raman, FTIR and ATR-FTIR microspectroscopy for imaging human skin tissue sections. Anal Methods 5:2281–2291CrossRefGoogle Scholar
  25. 25.
    Esmonde-White KA, Esmonde-White FWL, Morris MD, Roessler BJ (2014) Characterisation of biofluids prepared by sessile drop formation. Analyst 139(11):2734–2741CrossRefGoogle Scholar
  26. 26.
    Palonpon AF, Ando J, Yamakoshi K, Dodo K, Sodeoka M, Kawata S, Fujita K (2013) Raman and SERS microscopy for molecular imaging of live cells. Nat Protoc 8:677–692CrossRefGoogle Scholar
  27. 27.
    Gasparov L, Jegorel T, Loetgering L, Middey S, Chakhalian J (2014) Thin film substrates from the Raman spectroscopy point of view. J Raman Spectrosc 45(6):465–469CrossRefGoogle Scholar
  28. 28.
    Draux F, Jeannesson P, Beljebbar A, Tfayli A, Fourre N, Manfait M, Sule-Suso J, Sockalingum GD (2009) Raman spectral imaging of single living cancer cells: a preliminary study. Analyst 134(3):542–548CrossRefGoogle Scholar
  29. 29.
    Fogarty SW, Patel II, Martin FL, Fullwood NJ (2014) Surface-enhanced Raman spectroscopy of the endothelial cell membrane. PLoS One 9(9):e106283CrossRefGoogle Scholar
  30. 30.
    Bonnier F, Knief P, Lim B, Meade AD, Dorney J, Bhattacharya K, Lyng FM, Byrne HJ (2010) Imaging live cells grown on a 3D collagen matrix using Raman microspectroscopy. Analyst 135(12):3169–3177CrossRefGoogle Scholar
  31. 31.
    Lachin JM (1981) Introduction to sample size determination and power analysis for clinical trials. Control Clin Trials 2(2):93–113CrossRefGoogle Scholar
  32. 32.
    Lenith RV (2001) Some practical guidelines for effective sample size determination. Am Stat 55(3):187–193CrossRefGoogle Scholar
  33. 33.
    Dell RB, Holleran S, Ramakrishnan R (2002) Sample size determination. ILAR J 43(4):207–213CrossRefGoogle Scholar
  34. 34.
    Beletes C, Neugebauer U, Bocklitz T, Krafft C, Popp J (2013) Sample size planning for classification models. Anal Chim Acta 760:25–33CrossRefGoogle Scholar
  35. 35.
    Krafft C, Schie IW, Meyer T, Schmitt M, Popp J (2016) Developments in spontaneous and coherent Raman scattering microscopic imaging for biomedical applications. Chem Soc Rev 45(7):1819–1849CrossRefGoogle Scholar
  36. 36.
    Pence I, Mahadevan-Jansen A (2016) Clinical instrumentation and applications of Raman spectroscopy. Chem Soc Rev 45(7):1958–1979CrossRefGoogle Scholar
  37. 37.
    Thorley FC, Baldwin KJ, Lee DC, Batchelder DN (2006) Dependence of the Raman spectra of drug substances upon laser excitation wavelength. Journal of Raman Spectroscopy 37(1–3):335–341CrossRefGoogle Scholar
  38. 38.
    Meesters AA, Pitassi LHU, Campos V, Wolkerstorfer A, Dierickx CC (2014) Transcutaneous laser treatment of leg veins. Lasers Med Sci 29(2):481–492CrossRefGoogle Scholar
  39. 39.
    Kumamoto Y, Fujita K, Smith NI, Kawata S (2016) Deep-UV biological imaging by lanthanide ion molecular protection. Biomed Opt Express 7(1):158–170CrossRefGoogle Scholar
  40. 40.
    Efremov EV, Ariese F, Gooijer C (2008) Achievements in resonance Raman spectroscopy review of a technique with a distinct analytical chemistry potential. Anal Chim Acta 606(2):119–134CrossRefGoogle Scholar
  41. 41.
    Spiro TG, Strekas TC (1974) Resonance Raman spectra of heme proteins. Effects of oxidation and spin state. J Am Chem Soc 96(2):338–345CrossRefGoogle Scholar
  42. 42.
    Puppels GJ, de Mul FFM, Otto C, Greve J, Robert-Nicoud M, Arndt-Jovin DJ, Jovin TB (1990) Studying single living cells and chromosomes by confocal Raman microspectroscopy. Nature 347(6290):301–303CrossRefGoogle Scholar
  43. 43.
    De Grauw CJ, Otto C, Greve J (1997) Line-scan Raman microspectrometry for biological applications. Appl Spectrosc 51(11):1607–1612CrossRefGoogle Scholar
  44. 44.
    Hamada K, Fujita K, Smith NI, Kobayashi M, Inouye Y, Kawata S (2008) Raman microscopy for dynamic molecular imaging of living cells. J Biomed Opt 13(4):044027CrossRefGoogle Scholar
  45. 45.
    Pascut FC, Goh HT, Welch N, Buttery LD, Denning C, Notingher I (2011) Non-invasive detection and imaging of molecular markers in live cardiomyocytes derived from human embryonic stem cells. Biophys J 100(1):251–259CrossRefGoogle Scholar
  46. 46.
    Pavillon N, Smith NI (2016) Compressed sensing laser scanning microscopy. Opt Express 24(26):30038–30052CrossRefGoogle Scholar
  47. 47.
    Pavillon N, Smith NI (2015) Maximizing throughput in label-free microspectroscopy with hybrid Raman imaging. J Biomed Opt 20(1):016007CrossRefGoogle Scholar
  48. 48.
    Rowlands CJ, Varma S, Perkins W, Leach I, Williams H, Notingher I (2012) Rapid acquisition of Raman spectral maps through minimal sampling: applications in tissue imaging. J Biophotonics 5(3):200–229CrossRefGoogle Scholar
  49. 49.
    Zumbusch A, Holtom GR, Xie XS (1999) Three-dimensional vibrational imaging by coherent anti-stokes Raman scattering. Physics Review Letters 82:4142–4145CrossRefGoogle Scholar
  50. 50.
    Becker K, Kiefer J (2016) Combined spontaneous stokes and coherent anti-stokes Raman scattering spectroscopy. Applied Physics B 122:127CrossRefGoogle Scholar
  51. 51.
    Kano H, Segawa H, Okuno M, Leproux P, Couderc V (2016) Hyperspectral coherent Raman imaging – principle, theory, instrumentation and applications to life sciences. J Raman Spectrosc 47(1):116–123CrossRefGoogle Scholar
  52. 52.
    Camp CH Jr, Cicerone MT (2015) Chemically sensitive bioimaging with coherent Raman scattering. Nat Photonics 9:295–305CrossRefGoogle Scholar
  53. 53.
    Yonemaru Y, Palonpon AF, Kawano S, Smith NI, Kawata S, Fujita K (2015) Super-spatial- and -spectral-resolution in vibrational imaging via saturated coherent anti-stokes Raman scattering. Phys Rev Appl 4:014010CrossRefGoogle Scholar
  54. 54.
    Prince RC, Frontiera RR, Potma EO (2017) Stimulated Raman scattering: from bulk to nano. Chem Rev 117(7):5070–5094CrossRefGoogle Scholar
  55. 55.
    Ozeki Y, Umemura W, Otsuka Y, Satoh S, Hashimoto H, Sumimura K, Nishizawa N, Fukui K, Itoh K (2012) High-speed molecular spectral imaging of tissue with stimulated Raman scattering. Nat Photonics 6:845–851CrossRefGoogle Scholar
  56. 56.
    Byrne HJ, Knief P, Keating ME, Bonnier F (2016) Spectral pre and post processing for infrared and Raman spectroscopy of biological tissues and cells. Chem Soc Rev 45(7):1865–1878CrossRefGoogle Scholar
  57. 57.
    Kumar S, Verma T, Mukherjee R, Ariese F, Somasundaram K (2016) Umapathy Raman and infrared microscopy: towards quantitative evaluation for clinical research by ratiometric analysis. Chem Soc Rev 45(7):1879–1900CrossRefGoogle Scholar
  58. 58.
    Slater JB, Tedesco JM, Fairchild RC, Lewis IR (2001) Raman spectrometry and its adaptation to the industrial environment. In: Lewis IR, Edwards HGM (eds) Handbook of Raman spectroscopy from the research laboratory to the process line. CRC Press, Boca RatonGoogle Scholar
  59. 59.
    Bocklitz TW, Dörfer T, Heinke R, Schmitt M, Popp J (2015) Spectrometer calibration protocol for Raman spectra recorded with different excitation wavelengths. Spectrochim Acta A Mol Biomol Spectrosc 149:544–549CrossRefGoogle Scholar
  60. 60.
    Heuke S, Vogler N, Meyer T, Akimov D, Kluschke F, Röwert-Huber H-J, Lademann J, Dietzekand B, Popp J (2013) Multimodal mapping of human skin. Br J Dermatol 169(4):794–803CrossRefGoogle Scholar
  61. 61.
    Mavarani L, Petersen D, El-Mashtoly SF, Mosig A, Tannapfel A, Kötting C, Gerwert K (2013) Spectral histopathology of colon cancer tissue sections by Raman imaging with 532 nm excitation provides label-free annotation of lymphocytes, erythrocytes and proliferating nuclei of cancer cells. Analyst 138(14):4035–4039CrossRefGoogle Scholar
  62. 62.
    Ali SM, Bonnier F, Ptasinski K, Lambkin H, Flynn K, Lyng FM, Byrne HJ (2013) Raman spectroscopic mapping for the analysis of solar radiation induced skin damage. Analyst 138(14):3946–3956CrossRefGoogle Scholar
  63. 63.
    Franzen L, Mathes C, Hansen S, Windbergs M (2013) Advanced chemical imaging and comparisons of human and porcine hair follicles for drug delivery by confocal Raman microscopy. J Biomed Opt 18(6):061210CrossRefGoogle Scholar
  64. 64.
    Vukosavljevic B, De Kinder L, Siepmann J, Muschert S, Windbergs M (2016) Novel insights into controlled drug release from coated pellets by confocal Raman microscopy. J Raman Spectrosc 47(7):757–762CrossRefGoogle Scholar
  65. 65.
    Ashton L, Hollywood KA, Goodacre R (2015) Making colourful sense of Raman images of single cells. Analyst 140(6):1852–1858CrossRefGoogle Scholar
  66. 66.
    Shinzawa H, Awa K, Kanematsu W, Ozaki Y (2009) Multivariate data analysis for Raman spectroscopic imaging. J Raman Spectrosc 40(12):1720–1725CrossRefGoogle Scholar
  67. 67.
    Bonifacio A, Beleites C, Vittur F, Marsich E, Semeraro S, Paoletti S, Sergo V (2010) Chemical mapping of articular cartilage sections with Raman mapping employing uni- and multi-variate methods for data analysis. Analyst 135(12):3193–3204CrossRefGoogle Scholar
  68. 68.
    Matthäus C, Chernenko T, Quintero L, Miljković M, Milane L, Kale M, Amiji M, Torchilin V, Diem M (2010) Raman micro-spectral imaging of cells and intracellular drug delivery using nanocarrier systems. In: Dieing T, Hollrichter O, Toporski J (eds) Confocal Raman microscopy. Springer, BerlinGoogle Scholar
  69. 69.
    Miljković M, Chernenko T, Romeo MJ, Bird B, Matthäus C, Diem M (2010) Label-free imaging of human cells: algorithms for image reconstruction of Raman hyperspectral datasets. Analyst 135(8):2002–2013CrossRefGoogle Scholar
  70. 70.
    Hedegaard M, Matthäus C, Hassing S, Krafft C, Diem M, Popp J (2011) Spectral unmixing and clustering algorithms for assessment of single cells by Raman microscopic imaging. Theor Chem Accounts 130(4):1249–1260CrossRefGoogle Scholar
  71. 71.
    Vajna B, Patyi G, Nagy Z, Bódis A, Farkas A, Marosi G (2011) Comparison of chemometric methods in the analysis of pharmaceuticals with hyperspectral Raman imaging. J Raman Spectrosc 42(11):1977–1986CrossRefGoogle Scholar
  72. 72.
    Hotelling H (1933) Analysis of a complex of statistical variables into principal components. Warwick & York, BaltimoreGoogle Scholar
  73. 73.
    Nascimento JMP, Bioucas Dias JM (2005) Vertex component analysis: a fast algorithm to unmix hyperspectral data. IEEE Trans Geosci Remote Sens 43(4):898–910CrossRefGoogle Scholar
  74. 74.
    De Juan A, Jaumot J, Tauler R (2014) Multivariate curve resolution (MCR). Solving the mixture analysis problem. Anal Methods 6(14):4964–4976CrossRefGoogle Scholar
  75. 75.
    MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth berkeley symposium on mathematical statistics and probability. Statistics, vol 1. University of California Press, Berkeley, pp 281–297Google Scholar
  76. 76.
    Klein K, Gigler AM, Aschenbrenner T, Monetti R, Bunk W, Jamitzky F, Morfill G, Stark RW, Schlegel J (2012) Label-free live cell imaging with confocal microscopy. Biophys J 102(2):360–368CrossRefGoogle Scholar
  77. 77.
    Ramoji A, Neugebauer U, Bocklitz T, Foerster M, Kiehntopf M, Bauer M, Popp J (2012) Towards a spectroscopic hemogram: Raman spectroscopic differentiation of the two most abundant leukocytes from peripheral blood. Anal Chem 84(12):533–5342CrossRefGoogle Scholar
  78. 78.
    Kakita M, Kaliaperumal V, Hamaguchi H (2012) Resonance Raman quantification of the redox state of cytochromes B and C in vivo and in vitro. J Biophotonics 5(1):20–24CrossRefGoogle Scholar
  79. 79.
    Krauß SD, Petersen D, Niedieker D, Fricke I, Freier E, El-Mashtoly SF, Gerwert K, Mosig A (2015) Colocalization of fluorescence and Raman microscopic images for the identification of subcellular compartments: a validation study. Analyst 140(7):2360–2368CrossRefGoogle Scholar
  80. 80.
    Brazhe NA, Treiman M, Brazhe AR, Find NL, Maksimov GV, Sosnovtseva OV (2012) Mapping of redox state of mitochondrial cytochromes in live cardiomyocytes using Raman microspectroscopy. PLoS One 7(9):e41190CrossRefGoogle Scholar
  81. 81.
    Kochan K, Kus E, Filipek A, Szafrańska K, Chlopicki S, Baranska M (2017) Label-free spectroscopic characterisation of live liver sinusoidal endothelial cells (LSECs) isolated from the murine liver. Analyst 142(8):1308–1319CrossRefGoogle Scholar
  82. 82.
    Neugebauer U, Clement JH, Bocklitz T, Krafft C, Popp J (2010) Identification and differentiation of single cells from peripheral blood by Raman spectroscopic imaging. J Biophotonics 3(8–9):579–587CrossRefGoogle Scholar
  83. 83.
    Hobro AJ, Kumagai Y, Akira S, Smith NI (2016) Raman spectroscopy as a tool for label-free lymphocyte cell line discrimination. Analyst 141(12):3756–3764CrossRefGoogle Scholar
  84. 84.
    Zuser E, Chernenko T, Newmark J, Miljković M, Diem M (2010) Confocal Raman microspectral imaging (CRMI) of murine stem cell colonies. Analyst 135:3030–3033CrossRefGoogle Scholar
  85. 85.
    Ashton L, Lau K, Winder CL, Goodacre R (2011) Raman spectroscopy: lighting up the future of microbial identification. Future Microbiol 6(9):991–997CrossRefGoogle Scholar
  86. 86.
    Mazur AI, Monahan JL, Miljkovic M, Laver N, Diem M, Bird B (2013) Vibrational spectroscopic changes of B-lymphocytes upon activation. J Biophotonics 6(1):101–109CrossRefGoogle Scholar
  87. 87.
    Ghita A, Pascut FC, Mather M, Sottile V, Notingher I (2012) Cytoplasmic RNA in undifferentiated neural stem cells: a potential label-free Raman spectral marker for assessing the undifferentiated status. Anal Chem 84(7):3155–3162CrossRefGoogle Scholar
  88. 88.
    Meister K, Schmidt DA, Bründermann E, Havenith M (2010) Confocal Raman microspectroscopy as an analytical tool to assess the mitochondrial status in human spermatozoa. Analyst 135(6):1370–1374CrossRefGoogle Scholar
  89. 89.
    Mateu BP, Harreither E, Schosserer M, Puxbaum V, Gludovacz E, Borth N, Gierlinger N, Grillari J (2016) Label-free live cell imaging by confocal Raman spectroscopy identifies CHO host and producer cell lines. Biotechnol J 12(1):1600037CrossRefGoogle Scholar
  90. 90.
    Zoladek AB, Johal RK, Garcia-Nieto S, Pascut F, Shakesheff KM, Ghaemmaghami AM, Notingher I (2010) Label free molecular imaging of the immunological synapse between dendritic and T-cells by Raman micro-spectroscopy. Analyst 135(12):3205–3212CrossRefGoogle Scholar
  91. 91.
    Konorov SO, Schulze HG, Piret JM, Blades MW, Turner RFB (2013) Label-free determination of the cell cycle phase in human embryonic stem cells by Raman microspectroscopy. Anal Chem 85(19):8996–9002CrossRefGoogle Scholar
  92. 92.
    Schulze HG, Konorov SO, Piret JM, Blades MW, Turner RFB (2013) Label-free imaging of mammalian cell nucleoli by Raman microspectroscopy. Analyst 138(12):3416–3423CrossRefGoogle Scholar
  93. 93.
    Hsu J-F, Hsieh P-Y, Hsu H-Y, Shigeto S (2015) When cells divide: label-free multimodal spectral imaging for exploratory molecular investigation of living cells during cytokinesis. Sci Rep 5:17541CrossRefGoogle Scholar
  94. 94.
    Yang Y, Li F, Gao L, Wang Z, Thrall MJ, Shen SS, Wong KK, Wong STC (2011) Differential diagnosis of breast cancer using quantitative, label-free and molecular vibrational imaging. Biomed Opt Express 2(8):2160CrossRefGoogle Scholar
  95. 95.
    Larraona-Puy M, Ghita A, Zoladek A, Perkins W, Varma S, Leach IH, Koloydenko AA, Williams H, Notingher I (2011) Discrimination between basal cell carcinoma and hair follicles in skin tissue sections by Raman microspectroscopy. J Mol Struct 993(1–3):57–61CrossRefGoogle Scholar
  96. 96.
    Brozek-Pluska B, Kopec M, Niedzwiecka I, Morawiec-Sztandera A (2015) Label free determination of lipid composition and secondary protein structure of human salivary noncancerous and cancerous tissues by Raman microspectroscopy. Analyst 140(7):2107–2113CrossRefGoogle Scholar
  97. 97.
    Brozek-Pluska B, Kopec M, Abramczyk H (2016) Development of a new diagnostic Raman method for monitoring epigenetic modifications in the cancer cells of human breast tissue. Anal Methods 8(48):8542–8553CrossRefGoogle Scholar
  98. 98.
    Vanna R, Ronchi P, Lenferink ATM, Tresoldi C, Morasso C, Mehn D, Bedoni M, Picciolini S, Terstappen LWMM, Ciceri F, Otto C, Gramatica F (2015) Label-free imaging and identification of typical cells of acute myeloid leukaemia and myelodysplastic syndrome by Raman microspectroscopy. Analyst 140(4):1054–1064CrossRefGoogle Scholar
  99. 99.
    Surmacki J, Brozek-Pluska B, Kordek R, Abramczyk H (2015) The lipid-reactive oxygen species phenotype of breast cancer. Raman spectroscopy and mapping, PCA and PLSDA for invasive ductal carcinoma and invasive lobular carcinoma. Molecular tumorigenic mechanisms beyond the Warburg effect. Analyst 140(7):2121–2133CrossRefGoogle Scholar
  100. 100.
    Brozek-Pluska B, Kopec M, Surmacki J, Abramczyk H (2015) Raman microspectroscopy of noncancerous and cancerous breast tissues: identification and phase transitions of linoleic and oleic acids by Raman low temperature studies. Analyst 140(7):2134–2143CrossRefGoogle Scholar
  101. 101.
    Piredda P, Berning M, Boukamp P, Volkmer A (2015) Subcellular Raman microspectroscopic imaging of nucleic acids and tryptophan for distinction of normal human skin cells and tumorigenic keratinocytes. Anal Chem 87(13):6778–6785CrossRefGoogle Scholar
  102. 102.
    Kumar P, Bhattacharjee T, Pandey M, Hole A, Ingle A, Krishna CM (2016) Raman spectroscopy in experimental oral carcinogenesis: investigation of abnormal changes in control tissues. J Raman Spectrosc 47(11):1318–1326CrossRefGoogle Scholar
  103. 103.
    Abramczyk H, Surmacki J, Kopeć M, Olejnik AK, Lubecka-Pietruszewska K, Fabianowska-Majewska K (2015) The role of lipid droplets and adipocytes in cancer. Raman imaging of cell cultures: MCF10A, MCF7 and MDA-MB-231 compared to adipocytes in cancerous breast tissue. Analyst 140(7):2224–2235CrossRefGoogle Scholar
  104. 104.
    Tirinato L, Liberale C, Di Franco S, Candeloro P, Benfante A, La Rocca R, Potze L, Marotta R, Ruffilli R, Rajamanickam VP, Malerba M, De Angelis F, Falqui A, Carbone E, Todaro M, Medema JP, Stassi G, Di Fabrizio E (2015) Lipid droplets: a new player in colorectal cancer stem cells unveiled by spectroscopic imaging. Stem Cells 33(1):35–44CrossRefGoogle Scholar
  105. 105.
    Hartsuiker L, Zeijen NJL, Terstappen LWMM, Otto C (2010) A comparison of breast cancer tumor cells with varying expression of the Her2/neu receptor by Raman spectroscopic imaging. Analyst 135(12):3220–3226CrossRefGoogle Scholar
  106. 106.
    Pacia MZ, Buczek E, Blazejczyk A, Gregorius A, Wietrzyk J, Chlopicki S, Baranska M, Kaczorc A (2016) 3D Raman imaging of systemic endothelial dysfunction in the murine model of metastatic breast cancer. Anal Bioanal Chem 408:3381–3387CrossRefGoogle Scholar
  107. 107.
    Kong K, Rowlands CJ, Varma S, Perkins W, Leach IH, Koloydenko AA, Pitiot A, Williams HC, Notingher I (2014) Increasing the speed of tumour diagnosis during surgery with selective scanning Raman microscopy. J Mol Struct 1073:56–65CrossRefGoogle Scholar
  108. 108.
    Kong K, Zaabar F, Rakha E, Ellis I, Koloydenko A, Notingher I (2014) Towards intra-operative diagnosis of tumours during breast conserving surgery by selective-sampling Raman microspectroscopy. Phys Med Biol 59(20):6141–6152CrossRefGoogle Scholar
  109. 109.
    Czamara K, Natorska J, Kapusta P, Baranska M, Kaczor A (2015) Raman microspectroscopy of human aortic valves. Investigation of the local and global biochemical changes associated with calcification in aortic stenosis. Analyst 140(7):2164–2170CrossRefGoogle Scholar
  110. 110.
    Kochan K, Marzec KM, Chruszcz-Lipska K, Jasztal A, Maslak E, Musiolik H, Chłopicki S, Baranska M (2013) Pathological changes in the biochemical profile of the liver in atherosclerosis and diabetes assessed by Raman spectroscopy. Analyst 138(14):3885–3890CrossRefGoogle Scholar
  111. 111.
    Marzec KM, Kochan K, Fedorowicz A, Jasztal A, Chruszcz-Lipska K, Dobrowolski JC, Chlopicki S, Baranska M (2015) Raman microimaging of murine lungs: insight into the vitamin A content. Analyst 140(7):2171–2177CrossRefGoogle Scholar
  112. 112.
    Büntemeyer H, Lehmann J (2001) The role of vitamins in cell culture media in animal cell technology: from target to market. In: ESACT proceedings, vol 1. Springer Netherlands, pp 204–206CrossRefGoogle Scholar
  113. 113.
    Kochan K, Chrabaszcz K, Szczur B, Maslak E, Dybas J, Marzec KM (2016) IR and Raman imaging of murine brains from control and ApoE/LDLR−/− mice with advanced atherosclerosis. Analyst 141(18):5329–5338CrossRefGoogle Scholar
  114. 114.
    Pacia MZ, Mateuszuk L, Chlopicki S, Baranska M, Kaczor A (2015) Biochemical changes of the endothelium in the murine model of NO-deficient hypertension. Analyst 140(7):2178–2184CrossRefGoogle Scholar
  115. 115.
    Rygula A, Pacia MZ, Mateuszuk L, Kaczor A, Kostogrys RB, Chlopickiad S, Baranska M (2015) Identification of a biochemical marker for endothelial dysfunction using Raman spectroscopy. Analyst 140(7):2185–2189CrossRefGoogle Scholar
  116. 116.
    Michael R, Otto C, Lenferink A, Gelpi E, Montenegro GA, Rosandić J, Tresserra F, Barraquer RI, Vrensen GFJM (2014) Absence of amyloid beta in lenses of Alzheimer’s patients: a confocal Raman study. Exp Eye Res 119:44–53CrossRefGoogle Scholar
  117. 117.
    Große C, Bergner N, Dellith J, Heller R, Bauer M, Mellmann A, Popp J, Neugebauer U (2015) Label-free imaging and spectroscopic analysis of intracellular bacterial infections. Anal Chem 87(4):2137–2142CrossRefGoogle Scholar
  118. 118.
    Silge A, Abdou E, Schneider K, Meisel S, Bocklitz T, Lu-Walther H-W, Heintzmann R, Rösch P, Popp J (2015) Shedding light on host niches: label-free in situ detection of Mycobacterium gordonae via carotenoids in macrophages by Raman microspectroscopy. Cell Microbiol 17(6):832–842CrossRefGoogle Scholar
  119. 119.
    Kong K, Rowlands CJ, Elsheikha H, Notingher I (2012) Label-free molecular analysis of live Neospora caninum tachyzoites in host cells by selective scanning microspectroscopy. Analyst 137(18):4119–4112CrossRefGoogle Scholar
  120. 120.
    Naemat A, Elsheikha HM, Al-sandaqchi A, Kong K, Ghita A, Notingher I (2015) Analysis of interaction between the apicomplexan protozoan Toxoplasma gondii and host cells using label-free Raman spectroscopy. Analyst 140(3):756–764CrossRefGoogle Scholar
  121. 121.
    Hobro AJ, Konishi A, Coban C, Smith NI (2013) Raman spectroscopic analysis of malaria disease progression via blood and plasma samples. Analyst 138(14):3927–3933CrossRefGoogle Scholar
  122. 122.
    Hobro AJ, Pavillon N, Fujita K, Ozkan M, Coban C, Smith NI (2015) Label-free Raman imaging of the macrophage response to the malaria pigment hemozoin. Analyst 140(7):2350–2359CrossRefGoogle Scholar
  123. 123.
    Kozicki M, Creek DJ, Sexton A, Morahan BJ, Wesełucha-Birczyńska A, Wood BR (2015) An attenuated total reflection (ATR) and Raman spectroscopic investigation into the effects of chloroquine on Plasmodium falciparum infected red blood cells. Analyst 140(7):2236–2246CrossRefGoogle Scholar
  124. 124.
    Czepiel J, Kozicki M, Panasiuk P, Birczyńska M, Garlicki A, Wesełucha-Birczyńska A (2015) Clostridium difficile the hospital plague. Analyst 140(7):2513–2522CrossRefGoogle Scholar
  125. 125.
    Kochan K, Marzec KM, Maslak E, Chlopicki S, Baranska M (2015) Raman spectroscopic studies of vitamin A content in the liver: a biomarker of a healthy liver. Analyst 140(7):2074–2079CrossRefGoogle Scholar
  126. 126.
    El-Mashtoly SF, Yosef HK, Petersen D, Mavarani L, Maghnouj A, Hahn S, Kötting C, Gerwert K (2015) Label-free Raman spectroscopic imaging monitors the integral physiological relevant drug responses in cancer cells. Anal Chem 87(14):7297–7304CrossRefGoogle Scholar
  127. 127.
    Majzner K, Wojcik T, Szafraniec E, Lukawska M, Oszczapowicz I, Chlopicki S, Baranska M (2015) Nuclear accumulation of anthracyclines in the endothelium studied by bimodal imaging: fluorescence and Raman microscopy. Analyst 140(7):2302–2310CrossRefGoogle Scholar
  128. 128.
    Zhang H, Zheng J, Liu A, Xiao H, He L (2016) Label-free imaging and characterisation of cancer cell responses to polymethoxyflavones using Raman microscopy. J Agric Food Chem 64(51):9708–9713CrossRefGoogle Scholar
  129. 129.
    Kim D-H, Jarvis RM, Allwood JW, Batman G, Moore RE, Marsden-Edwards E, Hampson L, Hampson IN, Goodacre R (2010) Raman chemical mapping reveals site of action of HIV protease inhibitors in HPV16 E6 expressing cervical carcinoma cells. Anal Bioanal Chem 398(7):3051–3061CrossRefGoogle Scholar
  130. 130.
    Kang JW, Singh SP, Nguyen FT, Lue N, Sung Y, So PTC, Dasari RR (2016) Investigating effects of proteasome inhibitor on multiple myeloma cells using confocal Raman microscopy. Sensors 16(12):2133CrossRefGoogle Scholar
  131. 131.
    Brozek-Pluska B, Kopec M (2016) Raman microspectroscopy of hematoporphorins, imaging of the non-cancerous and the cancerous human breast tissues with photosensitisers. Spectrochim Acta A Mol Biomol Spectrosc 169:182–191CrossRefGoogle Scholar
  132. 132.
    Yosef HK, Mavarani L, Maghnouj A, Hahn S, El-Mashtoly SF, Gerwert K (2015) In vitro prediction of the efficacy of molecularly targeted cancer therapy by Raman spectral imaging. Anal Bioanal Chem 407(27):8321–8331CrossRefGoogle Scholar
  133. 133.
    Meister K, Niesel J, Schatzschneider U, Metzler-Nolte N, Schmidt DA, Havenith M (2010) Label-free imaging of metal-carbonyl complexes in live cells by Raman microspectroscopy. Angew Chem Int Ed 49(19):3310–3312CrossRefGoogle Scholar
  134. 134.
    Salehi H, Derely L, Vegh A-G, Durand J-C, Gergely C, Larroque C, Fauroux M-A, Cuisinier FJG (2013) Label free detection of anticancer drug Paclitaxel in living cells by confocal Raman microscopy. Appl Phys Lett 102(11):113701CrossRefGoogle Scholar
  135. 135.
    El-Mashtoly SF, Petersen D, Yosef HK, Mosig A, Reinacher-Schick A, Kötting C, Gerwert K (2014) Label-free imaging of drug distribution and metabolism in colon cancer cells by Raman microscopy. Analyst 139(5):1155–1161CrossRefGoogle Scholar
  136. 136.
    Goto N, Morita Y, Terada K (2016) Deposits from creams containing 20% (w/w) urea and suppression of crystallisation (part 3): novel analytical methods based on Raman spectroscopy for the characterisation of deposits and deposition phenomena of creams containing 20% (w/w) urea. Chem Pharm Bull 64(8):1099–1107CrossRefGoogle Scholar
  137. 137.
    Chernenko T, Matthäus C, Milane L, Quintero L, Amiji M, Diem M (2009) Label-free raman spectral imaging of intracellular delivery and degradation of polymeric nanoparticle systems. ACS Nano 3(11):3552–3559CrossRefGoogle Scholar
  138. 138.
    Raaschou-Nielsen O, Andersen ZJ, Beelen R, Samoli E, Stafoggia M, Weinmayr G, Hoffmann B, Fischer P, Nieuwenhuijsen MJ, Brunekreef B, Xun WW, Katsouyanni K, Dimakopoulou K, Sommar J, Forsberg B, Modig L, Oudin A, Oftedal B, Schwarze PE, Nafstad P, De Faire U, Pedersen NL, Östenson C-G, Fratiglioni L, Penell J, Korek M, Pershagen G, Eriksen KT, Sørensen M, Tjønneland A, Ellermann T, Eeftens M, Peeters PH, Meliefste K, Wang M, Bueno-de-Mesquita B, Key TJ, de Hoogh K, Concin H, Nagel G, Vilier A, Grioni S, Krogh V, Tsai M-Y, Ricceri F, Sacerdote C, Galassi C, Migliore E, Ranzi A, Cesaroni G, Badaloni C, Forastiere F, Tamayo I, Amiano P, Dorronsoro M, Trichopoulou A, Bamia C, Vineis P, Hoek G (2013) Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). Lancet Oncol 14(9):813–822CrossRefGoogle Scholar
  139. 139.
    Dorney J, Bonnier F, Garcia A, Casey A, Chambers G, Byrne HJ (2012) Identifying and localising intracellular nanoparticles using Raman spectroscopy. Analyst 137(5):1111–1119CrossRefGoogle Scholar
  140. 140.
    Bräutigam K, Bocklitz T, Silgea A, Dierker C, Ossig R, Schnekenburger J, Cialla D, Rösch P, Popp J (2014) Comparative two- and three-dimensional analysis of nanoparticle localisation in different cell types by Raman spectroscopic imaging. J Mol Struct 1073:44–50CrossRefGoogle Scholar
  141. 141.
    Ahlinder L, Ekstrand-Hammarström B, Geladi P, Osterlund L (2015) Large uptake of titania and iron oxide nanoparticles in the nucleus of lung epithelial cells as measured by Raman imaging and multivariate classification. Biophys J 105(2):310–319CrossRefGoogle Scholar
  142. 142.
    Cherchi C, Chernenko T, Diem M (2011) Impact of nano titanium dioxide exposure on cellular structure of anabaena variabilis and evidence of internalisation. Environ Toxicol Chem 30(4):861–869CrossRefGoogle Scholar
  143. 143.
    Iannarelli L, Giovannozzi AM, Morelli F, Viscotti F, Bigini P, Maurino V, Spoto G, Martra G, Ortel E, Hodoroaba V-D, Rossi AM, Diomede L (2016) Shape engineered TiO2 nanoparticles in C. elegans. A Raman imaging based approach to assist tissue-specific toxicological studies. RSC Adv 6(74):70501–70509CrossRefGoogle Scholar
  144. 144.
    Alebrahim MA, Krafft C, Popp J (2015) Raman imaging to study structural and chemical features of the dentine enamel junction. IOP Conf Ser: Mater Sci Eng 92:012014CrossRefGoogle Scholar
  145. 145.
    Fraser SJ, Natarajan AK, Clark ASS, Drummond BK, Gordon KC (2015) A Raman spectroscopic study of teeth affected with molar – incisor hypomineralisation. J Raman Spectrosc 46(2):202–210CrossRefGoogle Scholar
  146. 146.
    Masic A, Weaver JC (2015) Large area submicron chemical imaging of magnesium in sea urchin teeth. J Struct Biol 189(3):269–275CrossRefGoogle Scholar
  147. 147.
    Shabestari M, Eriksen EF, Paschalis EP, Roschger P, Gamsjaeger S, Klaushofer K, Berzlanovich A, Nogues X, Puig L, Diez-Perez A (2017) Presence of pyrophosphate in bone from an atypical femoral fracture site: a case report. Bone Reports 6:81–86CrossRefGoogle Scholar
  148. 148.
    Austin C, Smith TM, Farahani RM, Hinde K, Carter EA, Lee J, Lay PA, Kennedy BJ, Sarrafpour B, Wright RJ, Wright RO, Arora M (2016) Uncovering system-specific stress signatures in primate teeth with multimodal imaging. Sci Rep 6:18802CrossRefGoogle Scholar
  149. 149.
    Toledano M, Aguilera FS, Osorio E, Cabello I, Osorio R (2014) Microanalysis of thermal-induced changes at the resin-dentin interface. Microsc Microanal 20(4):1218–1233CrossRefGoogle Scholar
  150. 150.
    Toledano M, Cabello I, Aguilera FS, Osorio E, Osorio R (2015) Effect of in vitro chewing and bruxism events on remineralisation at the resin-dentin interface. J Biomech 48(1):14–21CrossRefGoogle Scholar
  151. 151.
    Hashimoto A, Chiu L-d, Sawada K, Ikeuchi T, Fujita K, Takedachi M, Yamaguchi Y, Kawata S, Murakami S, Tamiya E (2014) In situ Raman imaging of osteoblastic mineralisation. J Raman Spectrosc 45(2):157–161CrossRefGoogle Scholar
  152. 152.
    Ghita A, Pascut FC, Sottile V, Notingher I (2014) Monitoring the mineralization of bone nodules in vitro by space- and time-resolved Raman microscopy. Analyst 139(1):55–58CrossRefGoogle Scholar
  153. 153.
    Gao Y, Xu C, Wang L (2016) Non-invasive monitoring of the osteogenic differentiation of human mesenchymal stem cells on a polycaprolactone scaffold using Raman imaging. RSC Adv 6(66):61771CrossRefGoogle Scholar
  154. 154.
    Autefage H, Gentleman E, Littmann E, Hedegaard MA, Von Erlach T, O’Donnell M, Burden FR, Winkler DA, Stevens MM (2015) Sparse feature selection methods identify unexpected glabal cellular response to strontium containing materials. Proc Natl Acad Sci U S A 112(14):4280–4285CrossRefGoogle Scholar
  155. 155.
    Wei X, Wang X, Fang Y, Huang Q (2013) Comparison of hair from rectum cancer patients and from healthy persons by Raman microspectroscopy and imaging. J Mol Struct 1048:83–87CrossRefGoogle Scholar
  156. 156.
    Wu Y, Chen G, Ji C, Hoptroff M, Jones A, Collins LZ, Janssen H-G (2016) Gas chromatography – mass spectrometry and Raman imaging measurement of squalene content and distribution in human hair. Anal Bioanal Chem 408(9):2357–2362CrossRefGoogle Scholar
  157. 157.
    Perera PN, Schmidt M, Chuck PJ, Adams PD (2011) Blind image analysis for the compositional and structural characterisation of plant cell walls. Anal Chim Acta 702(2):172–177CrossRefGoogle Scholar
  158. 158.
    Hänninen T, Kontturi E, Vuonnen T (2011) Distribution of lignin and its coniferyl alcohol and coniferyl aldehyde groups in Picea abies and Pinus sylvestris as observed by Raman imaging. Phytochemistry 72(14–15):1889–1895CrossRefGoogle Scholar
  159. 159.
    Ma J, Lv X, Yang S, Tian G, Liu X (2015) Structural insight into cell wall architecture of Miscanthus sinensis using correlative microscopy approaches. Microsc Microanal 21(5):1304–1313CrossRefGoogle Scholar
  160. 160.
    Sun L, Singh S, Joo M, Vega-Sanchez M, Ronald P, Simmons BA, Adams P, Auer M (2016) Non-invasive imaging of cellulose microfibril orientation within plant cell walls by polarised Raman microspectroscopy. Biotechnol Bioeng 113(1):82–90CrossRefGoogle Scholar
  161. 161.
    Chu L-Q, Masyuko R, Sweedler JV, Bohn PW (2010) Base-induced delignification of miscanthus × giganteus studied by three-dimensional confocal Raman imaging. Bioresour Technol 101(13):4919–4925CrossRefGoogle Scholar
  162. 162.
    Vermaak I, Viljoen AM, Hamman JH, Baranska M (2010) The potential application of FT-Raman spectroscopy for the quantification and mapping of the steroidal glycoside P57 in Hoodia gordonii. Phytochem Lett 3(3):156–160CrossRefGoogle Scholar
  163. 163.
    Zimmermann B, Bağcıoğlu M, Sandt C, Kohler A (2015) Vibrational microspectroscopy enables chemical characterisation of single pollen grains as well as comparative analysis of plant species based on pollen ultrastructure. Planta 242(5):1237–1250CrossRefGoogle Scholar
  164. 164.
    Chylińska M, Szymańska-Chargot M, Zdunek A (2014) Imaging of polysaccharides in the tomato cell wall with Raman microspectroscopy. Plant Methods 10:14CrossRefGoogle Scholar
  165. 165.
    Philippe G, Gaillard C, Petit J, Geneix N, Dalgalarrondo M, Bres C, Mauxion J-P, Franke R, Rothan C, Schreiber L, Marion D, Bakan B (2016) Ester cross-link profiling of the cutin polymer of wild-type and cutin synthase tomato mutants highlights different mechanisms of polymerisation. Plant Physiol 170(2):807–820CrossRefGoogle Scholar
  166. 166.
    Szymańska-Chargot M, Chylińska M, Pieczywek PM, Rösch P, Schmitt M, Popp J, Zdunek A (2016) Raman imaging of changes in polysaccharide distribution in the cell wall during apple fruit development and senescence. Planta 243:935–945CrossRefGoogle Scholar
  167. 167.
    Richter S, Müssig J, Gierlinger N (2011) Functional plant cell wall design revealed by the Raman imaging approach. Planta 233(4):763–772CrossRefGoogle Scholar
  168. 168.
    Mateu BP, Hauser MT, Heredia A, Gierlinger N (2016) Waterproofing in Arabidopsis: following phenolics and lipids in situ by confocal Raman microscopy. Front Chem 4:10Google Scholar
  169. 169.
    Polisetti S, Bible AN, Morrell-Falvey JL, Bohn PW (2016) Raman chemical imaging of the rhizosphere bacterium Pantoea sp. YR343 and its co-culture with Arabidopsis thaliana. Analyst 141(7):2175CrossRefGoogle Scholar
  170. 170.
    Kammer M, Hedrich R, Ehrlich H, Popp J, Brunner E, Krafft C (2010) Spatially resolved determination of the structure and composition of diatom cell walls by Raman and FTIR imaging. Anal Bioanal Chem 398(1):509–517CrossRefGoogle Scholar
  171. 171.
    Chiu L-d, Ho S-H, Shimada R, Ren N-Q, Ozawa T (2017) Rapid in vitro lipid/carbohydrate quantification of single microalgal cell by Raman spectral imaging to reveal salinity-induced starch-to-lipid shift. Biotechnol Biofuels 10:9CrossRefGoogle Scholar
  172. 172.
    Noothalapati H, Sasaki T, Kaino T, Kawamukai M, Ando M, Hamaguchi H, Yamamoto T (2016) Label-free chemical imaging of fungal spore walls by Raman microscopy and multivariate curve resolution analysis. Sci Rep 6:27789CrossRefGoogle Scholar
  173. 173.
    Yoo HY, Iordachescu M, Huang J, Hennebert E, Kim S, Rho S, Foo M, Flammang P, Zeng H, Hwang D, Waite JH, Hwang DS (2016) Sugary interfaces mitigate contact damage where stiff meets soft. Nat Commun 7:11923CrossRefGoogle Scholar
  174. 174.
    Nakamura MJ, Hotta K, Oka K (2013) Raman spectroscopic imaging of the whole Ciona intestinalis embryo during development. PLoS One 8:e71739CrossRefGoogle Scholar
  175. 175.
    Hölscher D, Dhakshinamoorthy S, Alexandrov T, Becker M, Bretschneider T, Buerkert A, Crecelius AC, De Waele D, Elsen A, Heckel DG, Heklau H, Hertweck C, Kai M, Knop K, Krafft C, Maddula RK, Matthäus C, Popp J, Schneider B, Schubert US, Sikora RA, Svatoš A, Swennen RL (2014) Phenalenon-type phytoalexins mediate resistance of banana plants (musa spp.) to the burrowing nematode Radopholus similis. Proc Natl Acad Sci U S A 111(1):105–110CrossRefGoogle Scholar
  176. 176.
    Smith GPS, Holroyd SE, Reid DCW, Gordon KC (2017) Raman imaging processed cheese and its components. J Raman Spectrosc 48(3):374–383CrossRefGoogle Scholar
  177. 177.
    Kilcrease J, Collins AM, Richins RD, Timlin JA, O’Connell MA (2013) Multiple microscopic approaches demonstrate linkage between chromoplast architecture and carotenoid composition in diverse Capsicum annum fruit. Plant J 76(6):1074–1083CrossRefGoogle Scholar
  178. 178.
    Qin J, Chao K, Kim MS (2013) Simultaneous detection of multiple adulterants in dry milk using macroscale Raman chemical imaging. Food Chem 138(2–3):998–1007CrossRefGoogle Scholar
  179. 179.
    Dhakal S, Chao K, Qin J, Kim M, Chan D (2016) Raman spectral imaging for quantitative contaminant evaluation in skim milk powder. Food Meas 10(2):374–386CrossRefGoogle Scholar
  180. 180.
    Clemente I, Aznar M, Nerín C (2016) Raman imaging spectroscopy as a tool to investigate the cells damage on Aspergillus ochraceus caused by an antimicrobial packaging containing benzylisothiocyanate. Anal Chem 88(9):4772–4779CrossRefGoogle Scholar
  181. 181.
    Eksi-Kocak H, Mentes-Yilmaz O, Boyaci IH (2016) Detection of green pea adulteration in pistachio nut granules by using Raman hyperspectral imaging. Eur Food Res Technol 242(2):271–277CrossRefGoogle Scholar
  182. 182.
    Kwok K, Taylor LS (2012) Analysis of counterfeit Cialis tablets using Raman microscopy and multivariate curve resolution. J Pharm Biomed Anal 66:126–135CrossRefGoogle Scholar
  183. 183.
    Sacré P-Y, Deconinck E, Saerens L, De Beer T, Courselle P, Vancauwenberghe R, Chiap P, Crommen J, De Beer JO (2011) Detection of counterfeit Viagra by Raman microspectroscopy imaging and multivariate analysis. J Pharm Biomed Anal 56(2):454–461CrossRefGoogle Scholar
  184. 184.
    Smus JP, Moura CC, McMorrow E, Tare RS, Oreffo ROC, Mahajan S (2015) Tracking adipogenic differentiation of skeletal stem cells by label-free chemically selective imaging. Chem Sci 6(12):7089–7096CrossRefGoogle Scholar
  185. 185.
    Bradley J, Pope I, Masia F, Sanusi R, Langbein W, Swann K, Paola B (2016) Quantitative imaging of lipids in live mouse oocytes and early embryos using CARS microscopy. Development 143:2238–2247CrossRefGoogle Scholar
  186. 186.
    Chen W-W, Yi Y-H, Chien C-H, Hsiung K-C, Ma T-H, Lin Y-C, Lo SJ, Chang T-C (2016) Specific polyunsaturated fatty acids modulate lipid delivery and oocyte development in C. elegans revealed by molecular-selective label free imaging. Sci Rep 6:32021CrossRefGoogle Scholar
  187. 187.
    Jüngst C, Klein M, Zumbusch A (2013) Long term live cell microscopy studies of lipid droplet fusion dynamics in adipocytes. J Lipid Res 54(12):3419–3429CrossRefGoogle Scholar
  188. 188.
    Di Napoli C, Pope I, Masia F, Langbein W, Watson P, Borri P (2016) Quantitative spatiotemporal chemical profiling of individual lipid droplets by hyperspectral CARS microscopy in living human adipose-derived stem cells. Anal Chem 88(7):3677–3685CrossRefGoogle Scholar
  189. 189.
    Lee JH, Kim DH, Song WK, Oh M-K, Ko D-K (2015) Label-free imaging and quantitative chemical analysis of Alzheimer’s disease brain samples with multimodal multiphoton non-linear optical microscopy. J Biomed Opt 20(5):056013CrossRefGoogle Scholar
  190. 190.
    Cavonius L, Fink H, Kiskis J, Albers E, Undeland I, Enejder A (2015) Imaging of lipids in microalgae with coherent anti-stokes Raman microscopy. Plant Physiol 167(3):603–616CrossRefGoogle Scholar
  191. 191.
    Belanger E, Crépeau J, Laffray S, Vallée R, De Koninck Y, Côté D (2012) Live animal myelin histomorphometry of the spinal cord with video-rate multimodal nonlinear microendoscopy. J Biomed Opt 17(2):021107CrossRefGoogle Scholar
  192. 192.
    Turcotte R, Rutledge DJ, Bélanger E, Dill D, Macklin WB, Côté D (2016) Intravital assessment of myelin molecular order with polarimetric multiphoton microscopy. Sci Rep 6:31685CrossRefGoogle Scholar
  193. 193.
    Chen X, Gasecka P, Formanek F, Galey J-B, Rigneault H (2016) In vivo single human sweat gland activity monitoring using coherent anti-stokes Raman scattering and two-photon excited autofluorescence microscopy. Br J Dermatol 174(4):803–812CrossRefGoogle Scholar
  194. 194.
    Wang H, Osseiran S, Igras V, Nichols AJ, Roider EM, Pruessner J, Tsao H, Fisher DE, Evans CL (2016) Invivo coherent Raman imaging of the melanomagenesis-associated pigment pheomelanin. Sci Rep 6:37986CrossRefGoogle Scholar
  195. 195.
    Johnston HJ, Mouras R, Brown DM, Elfick A, Stone V (2015) Exploring the cellular and tissue uptake of nanomaterials in a range of biological samples using multimodal non-linear optical microscopy. Nanotechnology 26(50):505102CrossRefGoogle Scholar
  196. 196.
    Watts AJR, Lewis C, Goodhead RM, Beckett SJ, Moger J, Tyler CR, Galloway TS (2014) Uptake and retention of microplastics by the shore crab Carcinus maenas. Environ Sci Technol 48(15):8823–8830CrossRefGoogle Scholar
  197. 197.
    Uckermann O, Galli R, Tamosaityte S, Leipnitz E, Geiger KD, Schackert G, Koch E, Steiner G, Kirsch M (2014) Label-free delineation of brain tumours by coherent anti-stokes Raman scattering microscopy in an orthotopic mouse model and human glioblastoma. PLoS One 9(9):e107115CrossRefGoogle Scholar
  198. 198.
    Potcoava MC, Futia GL, Aughenbaugh J, Schlaepfer IR, Gibson EA (2014) Raman and coherent anti-stokes Raman scattering microscopy studies of changes in lipid content and composition in hormone treated breast and prostate cancer cells. J Biomed Opt 19(11):111065CrossRefGoogle Scholar
  199. 199.
    Parekh SH, Lee YJ, Aamer KA, Cicerone MT (2010) Label-free cellular imaging by broadband coherent anti-stokes Raman scattering microscopy. Biophys J 99(8):2695–2704CrossRefGoogle Scholar
  200. 200.
    Bito K, Okuno M, Kano H, Tokuhara S, Naito S, Masukawa Y, Leproux P, Couderc V, Hamaguchi H (2012) Protein secondary structure imaging with ultrabroadband multiplex coherent anti-stokes Raman scattering microspectroscopy. J Phys Chem B 116(4):1425–1457CrossRefGoogle Scholar
  201. 201.
    Lin C-Y, Suhalim JL, Nien CL, Miljković MD, Diem M, Jester JV, Potma EO (2011) Picosecond spectral coherent anti-stokes Raman scattering with principal component analysis of Meibomian glands. J Biomed Opt 16(2):021104CrossRefGoogle Scholar
  202. 202.
    El-Mashtoly SF, Niedieker D, Petersen D, Krauss SD, Freier E, Maghnouj A, Mosig A, Hahn S, Kötting C, Gerwert K (2014) Automated identification of subcellular organelles by coherent anti-stokes Raman scattering. Biophys J 106(9):1910–1920CrossRefGoogle Scholar
  203. 203.
    Roeffaers MBJ, Zhang X, Freudiger CW, Saar BG, van Ruijven M, van Dalen G, Xiao C, Xie XS (2011) Label-free imaging of biomolecules in food products using stimulated Raman microscopy. J Biomed Opt 16(2):021118CrossRefGoogle Scholar
  204. 204.
    Littlejohn GR, Mansfield JC, Parker D, Lind R, Perfect S, Seymour M, Smirnoff N, Love J, Moger J (2015) In vivo chemical and structural analysis of plant cuticle waxes using SRS microscopy. Plant Physiol 168(1):18–28CrossRefGoogle Scholar
  205. 205.
    Zeng Y, Zhao S, Wei H, Tucker MP, Himmel ME, Mosier NS, Meilan R, Ding S-Y (2015) In situ micro-spectroscopic investigation of lignin in poplar cell walls pretreated by maleic acid. Biotechnol Biofuels 8:126CrossRefGoogle Scholar
  206. 206.
    Mansfield JC, Littlejohn GR, Seymour MP, Lind RJ, Perfect S, Moger J (2013) Label-free chemically specific imaging in planta with stimulated Raman scattering microscopy. Anal Chem 85(10):5055–5063CrossRefGoogle Scholar
  207. 207.
    Egawa M, Tokunaga K, Hosoi J, Iwanaga S, Ozeki Y (2016) In situ visualisation of intracellular morphology of epidermal cells using stimulated Raman scattering microscopy. J Biomed Opt 21(8):086017CrossRefGoogle Scholar
  208. 208.
    Tian F, Yang W, Mordes DA, Wang J-Y, Salameh JS, Mok J, Chew J, Sharma A, Leno-Duran E, Suzuki-Uematsu S, Suzuki N, Han SS, Lu F-K, Ji M, Zhang R, Liu Y, Strominger J, Shneider NA, Petrucelli L, Xie XS, Eggan K (2016) Monitoring peripheral nerve degeneration in ALS by label-free stimulated Raman scattering imaging. Nat Commun 7:13283CrossRefGoogle Scholar
  209. 209.
    Conley SJ, Wicha MX (2013) Breast cancer stem cells: from theory to therapy. In: Sell S (ed) Stem cells handbook. Humana Press, TotowaGoogle Scholar
  210. 210.
    Li J, Condello S, Thomes-Pepin J, Ma X, Xia Y, Hurley TD, Matei D, Cheng J-X (2017) Lipid desaturation is a metabolic marker and therapeutic target of ovarian cancer stem cells. Cell Stem Cell 20(3):1–12Google Scholar
  211. 211.
    Lu F-K, Basu S, Igras V, Hoang MP, Ji M, Fu D, Holtom GR, Neel VA, Freudiger CW, Fisher DE, Xie XS (2015) Label-free DNA imaging in vivo with stimulated Raman scattering microscopy. Proc Natl Acad Sci U S A 112(37):11624–11629CrossRefGoogle Scholar
  212. 212.
    Satoh S, Otsuka Y, Ozeki Y, Itoh K, Hashiguchi A, Yamazaki K, Hashimoto H, Sakamoto M (2014) Label-free visualisation of acetaminophen-induced liver injury by high-speed stimulated Raman scattering spectral microscopy and multivariate image analysis. Pathol Int 64(10):518–526CrossRefGoogle Scholar
  213. 213.
    Datta R, Heylman C, George SC, Gratton E (2016) Label-free imaging of metabolism and oxidative stress in human induced pluripotent stem-cell derived cardiomyocytes. Biomed Opt Express 7(5):1690–1701CrossRefGoogle Scholar
  214. 214.
    Pavillon N, Smith NI (2015) Implementation of simultaneous quantitative phase with Raman imaging. EPJ Tech Instrum 2(5):1–11Google Scholar
  215. 215.
    Petibois C (2010) Imaging methods for elemental, chemical, molecular and morphological analysis of single cells. Anal Bioanal Chem 397:2051–2065CrossRefGoogle Scholar
  216. 216.
    Garip S, Bayari SH, Severcan M, Abbas S, Lednev IK, Severcan F (2016) Structural effects of Simvastatin on rat liver tissue. Fourier transform infrared and Raman microspectroscopic studies. J Biomed Opt 21(2):025008CrossRefGoogle Scholar
  217. 217.
    Lau K, Hobro A, Smith T, Thurston T, Lendl B (2012) Label-free non-destructive in situ biochemical analysis of nematode Steinernema kraussei using FPA-FTIR and Raman spectroscopic imaging. Vib Spectrosc 60:34–42CrossRefGoogle Scholar
  218. 218.
    Sroka-Bartnicka A, Kimber JA, Borkowski L, Pawlowska M, Polkowska I, Kalisz G, Belcarz A, Jozwiak K, Ginalska G, Kazarian SG (2015) The biocompatibility of carbon hydroxyapatite/β-glucan composite for bone tissue engineering studied with Raman and FTIR spectroscopic imaging. Anal Bioanal Chem 407(25):7775–7785CrossRefGoogle Scholar
  219. 219.
    Chia CH, Gong B, Joseph SD, Marjo CE, Munroe P, Rich AM (2012) Imaging of mineral enriched biochar by FTIR, Raman and SEM-EDX. Vib Spectrosc 62:248–257CrossRefGoogle Scholar
  220. 220.
    Caine S, Hackett MJ, Hou H, Kumar S, Maley J, Ivanishvili Z, Suen B, Szmigielski A, Jiang Z, Sylvain NJ, Nichol H (2016) A novel multimodal platform to image molecular and elemental alterations in ischemic stroke. Neurobiol Dis 91:132–142CrossRefGoogle Scholar
  221. 221.
    Palombo F, Madami M, Fioretto D, Nallala J, Barr H, David A, Stone N (2016) Chemico-mechanical imaging of Barratt’s oesophagus. J Biophotonics 9(7):694–700CrossRefGoogle Scholar
  222. 222.
    Spengler B (2015) Mass spectrometry imaging of biomolecular information. Anal Chem 87(1):64–82CrossRefGoogle Scholar
  223. 223.
    Lanni EJ, Masyuko RN, Driscoll CM, Dunham SJB, Shrout JD, Bohn PW, Sweedler JV (2014) Correlated imaging with C60-SIMS and confocal Raman microscopy: visualisation of cell-scale molecular distributions in bacterial biofilms. Anal Chem 86(21):10885–10891CrossRefGoogle Scholar
  224. 224.
    Ahlf DR, Masyuko RN, Hummon AB, Bohn PW (2014) Correlated mass spectrometry imaging and confocal Raman microscopy for studies of three dimensional cell culture sections. Analyst 139(18):4578–4585CrossRefGoogle Scholar
  225. 225.
    Bocklitz TW, Bräutigam K, Urbanek A, Hoffmann F, von Eggeling F, Ernst G, Schmitt M, Schubert U, Guntinas-Lichius O, Popp J (2015) Novel workflow for combining Raman spectroscopy and MALDI-MSI for tissue based studies. Anal Bioanal Chem 407(26):7865–7873CrossRefGoogle Scholar
  226. 226.
    Gavara N (2017) A beginner’s guide to atomic force microscopy probing for cell mechanics. Microsc Res Tech 80(1):75–84CrossRefGoogle Scholar
  227. 227.
    Boifor R, Sinjab F, Strohbuecker S, Sottile V, Notingher I (2016) Towards quantitative molecular mapping of cells by Raman microscopy: using AFM for decoupling molecular concentration and cell topography. Faraday Discuss 187:199–212CrossRefGoogle Scholar
  228. 228.
    Ashgari-Khiavi M, Wood BR, Mechler A, Bambery KR, Buckingham DW, Cooke BM, McNaughton D (2010) Correlation of atomic force microscopy and Raman microspectrscopy to study the effects of ex vivo treatment procedures on human red blood cells. Analyst 135(3):525–530CrossRefGoogle Scholar
  229. 229.
    Marzec KM, Rygula A, Wood BR, Chlopicki S, Baranska High-resolution M (2015) Raman imaging reveals spatial location of heme oxidation sites in single red blood cells of dried smears. J Raman Spectrosc 46(1):76–83CrossRefGoogle Scholar
  230. 230.
    Liao C, Piercey-Normore MD, Sorensen JL, Gough K (2010) In situ imaging of usnic acid in selected Cladonia spp by vibrational spectroscopy. Analyst 135(12):3242–3248CrossRefGoogle Scholar
  231. 231.
    Tang M, McEwen GD, Wu Y, Miller CD, Zhou A (2013) Characterisation and analysis of mycobacteria and gram-negative bacteria and co-culture mixtures by Raman microspectroscopy, FTIR and atomic force microscopy. Anal Bioanal Chem 405(5):1577–1591CrossRefGoogle Scholar
  232. 232.
    Pavillon N, Hobro AJ, Smith NI (2013) Cell optical density and molecular composition revealed by simultaneous multimodal label-free imaging. Biophys J 105(5):1123–1132CrossRefGoogle Scholar
  233. 233.
    Kang JW, Lue N, Kong C-R, Barman I, Dingari NC, Goldfless SJ, Niles JC, Dasari RR, Feld MS (2011) Combined confocal Raman and quantitative phase microscopy system for biomedical diagnosis. Biomed Opt Express 2(9):2484–2492CrossRefGoogle Scholar
  234. 234.
    Ferrara MA, Di Caprio G, Managò S, De Angelis A, Sirleto L, Coppola G, De Luca AC (2015) Label-free imaging and biochemical characterisation of bovine sperm cells. Biosensors 5(2):141–157CrossRefGoogle Scholar
  235. 235.
    Ibrahim A, Hage CH, Souissi A, Leray A, Héliot L, Souissi S, Vandenbunder B (2015) Label-free microscopy and stress responses reveal the functional organisation of Pseudodiaptomus marinus copepod myofibrils. J Struct Biol 191(2):224–235CrossRefGoogle Scholar
  236. 236.
    Xu X, Cheng J, Thrall MJ, Liu Z, Wang X, Wong STC (2013) Multimodal non-linear optical imaging for label-free differentiation of lung cancerous lesions from normal and desmoplastic tissues. Biomed Opt Express 4(12):2855CrossRefGoogle Scholar
  237. 237.
    Galli R, Sablinskas V, Dasevicius D, Laurinavicius A, Jankevicius F, Koch E, Steiner G (2014) Non-linear optical microscopy of kidney tumours. J Biophotonics 7(1–2):23–27CrossRefGoogle Scholar
  238. 238.
    Meyer T, Baumgartl M, Gottschall T, Pascher T, Wuttig A, Matthäus C, Romeike BFM, Brehm BR, Limpert J, Tünnermann A, Guntinas-Lichius O, Dietzek B, Schmitti M, Popp J (2013) A compact microscope setup for multimodal nonlinear imaging in clinics and its application to disease diagnostics. Analyst 138(14):4048–4057CrossRefGoogle Scholar
  239. 239.
    Matthäus C, Cicchi R, Meyer T, Lattermann A, Schmitt M, Romeike BFM, Krafft C, Dietzek B, Brehm BR, Pavone FS, Popp J (2014) Multimodal non-linear imaging of atherosclerotic plaques differentiation of triglyceride and cholesterol deposits. J Innov Opt Health Sci 7(5):1450027CrossRefGoogle Scholar
  240. 240.
    Legesse FB, Heuke S, Galler K, Hoffmann P, Schmitt M, Neugebauer U, Bauer M, Popp J (2016) Hepatic vitamin A content investigation using coherent anti-stokes Raman scattering microscopy. ChemPhysChem 17(24):4043–4051CrossRefGoogle Scholar
  241. 241.
    Chernavskaia O, Heuke S, Vieth M, Friedrich O, Schürmann S, Atreya R, Stallmach A, Neurath MF, Waldner M, Petersen I, Schmitt M, Bocklitz T, Popp J (2016) Beyond endoscopic assessment in inflammatory bowel disease: real-time histology of disease activity by non-linear multimodal imaging. Sci Rep 6:29239CrossRefGoogle Scholar
  242. 242.
    Pliss A, Kuzmin AN, Kachynski AV, Prasad PN (2010) Non-linear optical imaging and microspectrometry of the cell nucleus through the cell cycle. Biophys J 99(10):3483–3491CrossRefGoogle Scholar
  243. 243.
    Pirhonen J, Arola J, Sädevirta S, Luukkonen P, Karppinen S-M, Pihlajaniemi T, Isomäki A, Hukkanen M, Yki-Järvinen H, Ikonen E (2016) Continuous grading of early fibrosis in NAFLD using label free imaging: a proof of concept study. PLoS One 11:e0147804CrossRefGoogle Scholar
  244. 244.
    Haluszka D, Lőrincz K, Kiss N, Szipőcs R, Kuroli E, Gyöngyösi N, Wikonkál NM (2016) Diet-induced obesity skin changes monitored by in vivo SHG and ex vivo CARS microscopy. Biomed Opt Express 7(11):4480–4489CrossRefGoogle Scholar
  245. 245.
    Mortati L, Divieto C, Sassi MP (2012) CARS and SHG microscopy to follow collagen production in living human corneal fibroblasts and mesenchymal stem cells in fibrin hydrogel 3D cultures. J Raman Spectrosc 43(5):675–680CrossRefGoogle Scholar
  246. 246.
    Brackmann C, Bengtsson A, Alminger ML, Svanberg U, Enejder A (2011) Visualisation of β-carotene and starch granules in plant cell using CARS and SHG microscopy. J Raman Spectrosc 42(4):586–592CrossRefGoogle Scholar
  247. 247.
    Brackmann C, Dahlberg J-O, Vrana NE, Lally C, Gatenholm P, Enejder A (2012) Non-linear microscopy of smooth muscle cells in artificial extracellular matrices made of cellulose. J Biophotonics 5(5–6):404–414CrossRefGoogle Scholar
  248. 248.
    Mansfield J, Moger J, Green E, Moger C, Winlove CP (2013) Chemically specific imaging and in-situ chemical analysis of articular cartilage with stimulated Raman scattering. J Biophotonics 6(10):803–814Google Scholar
  249. 249.
    Kallaway C, Almond LM, Barr H, Wood J, Hutchings J, Kendall C, Stone N (2013) Advances in the clinical application of Raman spectroscopy for cancer diagnosis. Photodiagn Photodyn Ther 10(3):207–219CrossRefGoogle Scholar
  250. 250.
    Watanabe K, Palonpon AF, Smith NI, Chiu L-d, Kasai A, Hashimoto H, Kawano S, Fujita K (2015) Structured line illumination Raman microscopy. Nat Commun 6:10095CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Biophotonics LaboratoryImmunology Frontier Research Center, Osaka UniversitySuita CityJapan

Personalised recommendations