Upconversion Nanomaterials for Biodetection and Multimodal Bioimaging Using Photoluminescence

  • Ming-Kiu Tsang
  • Yuen-Ting Wong
  • Jianhua HaoEmail author


Lanthanide-doped upconversion nanomaterials are suitable for biological applications because of their near-infrared excitation property. The excitation wavelength is within the first biological window; therefore this can minimize the damage to biological samples for biomedical applications. Apart from upconversion luminescence, the doped lanthanide ions display inherent physical properties for multimodal bioimaging. The advance in nanotechnology also provides an opportunity for the synthesis of novel upconversion nanomaterial-based nanocomposites. Those hybrid structures further increase the number of modalities for biodiagnostic applications. In this chapter, we introduce the key features of lanthanide-doped nanomaterials and review the recent progress in biodetection and multimodal bioimaging.



This work was supported by the Hong Kong Ph.D. Fellowship Scheme Fund Innovation and Technology Support Programme (Project No. ITS/057/15) and Research Grants Council of Hong Kong (GRF No. PolyU 153281/16P).


  1. 1.
    Chan WCW, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13(1):40–46CrossRefGoogle Scholar
  2. 2.
    Nozik AJ, Beard MC, Beard JM, Law M, Ellingson RJ, Johnson JC (2010) Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem Rev 110(11):6873–6890CrossRefGoogle Scholar
  3. 3.
    Olutas M, Guzelturk B, Kelestemur Y, Gungor K, Demir HV (2016) Highly efficient nonradiative energy transfer from colloidal semiconductor quantum dots to wells for sensitive noncontact temperature probing. Adv Funct Mater 26(17):2891–2899CrossRefGoogle Scholar
  4. 4.
    Rass K, Jorg R (2008) UV damage and DNA repair in malignant melanoma and nonmelanoma skin cancer. In: Jorg R (ed) Sunlight, Vitamin D and skin cancer. Springer, New York, pp 162–174CrossRefGoogle Scholar
  5. 5.
    Weissleder RA (2001) Clearer vision for in vivo imaging progress continues in the development of smaller, more penetrable probes for biological imaging. Nat Biotechnol 19(4):316–317CrossRefGoogle Scholar
  6. 6.
    Zheng W, Huang P, Tu D, Ma E, Zhu H, Chen X (2015) Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection. Chem Soc Rev 44(6):1379–1415CrossRefGoogle Scholar
  7. 7.
    Tsang M-K, Bai G, Hao J (2015) Stimuli responsive upconversion luminescence nanomaterials and films for various applications. Chem Soc Rev 44(6):1585–1607CrossRefGoogle Scholar
  8. 8.
    Haase M, Schäfer H (2011) Upconverting nanoparticles. Angew Chem Int Ed 50(26):5808–5829CrossRefGoogle Scholar
  9. 9.
    Wang Z-L, Hao J, Chan HLW, Wong W-T, Wong K-L (2012) A strategy for simultaneously realizing the cubic-to-hexagonal phase transition and controlling the small size of NaYF4:Yb3+, Er3+ nanocrystals for in vitro cell imaging. Small 8(12):1863–1868CrossRefGoogle Scholar
  10. 10.
    Dai Y, Ma P, Cheng Z, Kang X, Zhang X, Hou Z, Li C, Yang D, Zhai X, Lin J (2012) Up-conversion cell imaging and pH-induced thermally controlled drug release from NaYF4:Yb3+/Er3+@hydrogel core-shell hybrid microspheres. ACS Nano 6(4):3327–3338CrossRefGoogle Scholar
  11. 11.
    Zhou J-C, Yang Z-L, Dong W, Tang R-J, Sun L-D, Yan C-H (2011) Bioimaging and toxicity assessments of near-infrared upconversion luminescent NaYF4:Yb, Tm nanocrystals. Biomaterials 32(34):9059–9067CrossRefGoogle Scholar
  12. 12.
    Yi Z, Li X, Xue Z, Liang X, Lu W, Peng H, Liu H, Zeng S, Hao J (2015) Remarkable NIR enhancement of multifunctional nanoprobes for in vivo trimodal bioimaging and upconversion optical/T2-weighted MRI-guided small tumor diagnosis. Adv Funct Mater 25(46):7119–7129CrossRefGoogle Scholar
  13. 13.
    Naccache R, Chevallier P, Lagueux J, Gossuin Y, Laurent S, VanderElst L, Chilian C, Capobianco JA, Fortin M-A (2013) High relaxivities and strong vascular signal enhancement for NaGdF4 nanoparticles designed for dual MR/optical imaging. Adv Healthc Mater 2(11):1478–1488CrossRefGoogle Scholar
  14. 14.
    He M, Huang P, Zhang C, Hu H, Bao C, Gao G, He R, Cui D (2011) Dual phase-controlled synthesis of uniform lanthanide-doped NaGdF4 upconversion nanocrystals via an OA/ionic liquid two-phase system for in vivo dual-modality imaging. Adv Funct Mater 21(23):4470–4477CrossRefGoogle Scholar
  15. 15.
    Tsang M-K, Zeng S, Chan HLW, Hao J (2013) Surface ligand-mediated phase and upconversion luminescence tuning of multifunctional NaGdF4:Yb/Er materials with paramagnetic and cathodoluminescent characteristics. Opt Mater 35(12):2691–2697CrossRefGoogle Scholar
  16. 16.
    Zhao L, Kutikov A, Shen J, Duan C, Song J, Han G (2013) Stem cell labeling using polyethylenimine conjugated (α-NaYbF4:Tm3+)/CaF2 upconversion nanoparticles. Theranostics 3(4):249–257CrossRefGoogle Scholar
  17. 17.
    Zhan Q, Qian J, Liang H, Somesfalean G, Wang D, He S, Zhang Z, Andersson-Engels S (2011) Using 915 nm laser excited Tm3+/Er3+/Ho3+- doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation. ACS Nano 5(5):3744–3757CrossRefGoogle Scholar
  18. 18.
    Wang C, Cheng L, Liu Z (2011) Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy. Biomaterials 32(4):1110–1120CrossRefGoogle Scholar
  19. 19.
    Wang F, Deng R, Wang J, Wang Q, Han Y, Zhu H, Chen X, Liu X (2011) Tuning upconversion through energy migration in core-shell nanoparticles. Nat Mater 10(12):968–973CrossRefGoogle Scholar
  20. 20.
    Wang Y-F, Liu G-Y, Sun L-D, Xiao J-W, Zhou J-C, Yan C-H (2013) Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect. ACS Nano 7(8):7200–7206CrossRefGoogle Scholar
  21. 21.
    Bai G, Tsang M-K, Hao J (2016) Luminescent ions in advanced composite materials for multifunctional applications. Adv Funct Mater 26(35):6330–6350CrossRefGoogle Scholar
  22. 22.
    Sedlmeier A, Gorris HH (2015) Surface modification and characterization of photon-upconverting nanoparticles for bioanalytical applications. Chem Soc Rev 44(6):1526–1560CrossRefGoogle Scholar
  23. 23.
    Feng W, Han C, Li F (2013) Upconversion-nanophosphor-based functional nanocomposites. Adv Mater 25(37):5287–5303CrossRefGoogle Scholar
  24. 24.
    Chen G, Qiu H, Prasad PN, Chen X (2014) Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem Rev 114(10):5161–5214CrossRefGoogle Scholar
  25. 25.
    Gai S, Li C, Yang P, Lin J (2014) Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications. Chem Rev 114(4):2343–2389CrossRefGoogle Scholar
  26. 26.
    Feng W, Zhu X, Li F (2013) Recent advances in the optimization and functionalization of upconversion nanomaterials for in vivo bioapplications. NPG Asia Mater 5(12):e75CrossRefGoogle Scholar
  27. 27.
    Muhr V, Wilhelm S, Hirsch T, Wolfbeis OS (2014) Upconversion nanoparticles: from hydrophobic to hydrophilic surfaces. Acc Chem Res 47(12):3481–3493CrossRefGoogle Scholar
  28. 28.
    Jo E-J, Mun H, Kim M-G (2016) Homogeneous immunosensor based on luminescence resonance energy transfer for glycated hemoglobin detection using upconversion nanoparticles. Anal Chem 88(5):2742–2746CrossRefGoogle Scholar
  29. 29.
    Ye WW, Tsang M-K, Liu X, Yang M, Hao J (2014) Upconversion luminescence resonance energy transfer (LRET)-based biosensor for rapid and ultrasensitive detection of avian influenza virus H7 subtype. Small 10(12):2390–2397CrossRefGoogle Scholar
  30. 30.
    Deng R, Xie X, Vendrell M, Chang Y-T, Liu X (2011) Intracellular glutathione detection using MnO2-nanosheet-modified upconversion nanoparticles. J Am Chem Soc 133(50):20168–20171CrossRefGoogle Scholar
  31. 31.
    Zhang C, Yuan Y, Zhang S, Wang Y, Liu Z (2011) Biosensing platform based on fluorescence resonance energy transfer from upconverting nanocrystals to graphene oxide. Angew Chem Int Ed 50(30):6851–6854CrossRefGoogle Scholar
  32. 32.
    Li H, Shi L, Sun D, Li P, Liu Z (2016) Fluorescence resonance energy transfer biosensor between upconverting nanoparticles and palladium nanoparticles for ultrasensitive CEA detection. Biosens Bioelectron 86:791–798CrossRefGoogle Scholar
  33. 33.
    Jin B, Wang S, Lin M, Jin Y, Zhang S, Cui X, Gong Y, Li A, Xu F, Lu TJ (2017) Upconversion nanoparticles based FRET aptasensor for rapid and ultrasenstive bacteria detection. Biosens Bioelectron 90:525–533CrossRefGoogle Scholar
  34. 34.
    Xu S, Dong B, Zhou D, Yin Z, Cui S, Xu W, Chen B, Song H (2016) Paper-based upconversion fluorescence resonance energy transfer biosensor for sensitive detection of multiple cancer biomarkers. Sci Rep 6:23406CrossRefGoogle Scholar
  35. 35.
    Xu J, Zhou S, Tu D, Zheng W, Huang P, Li R, Chen Z, Huang M, Chen X (2016) Sub-5 nm lanthanide-doped lutetium oxyfluoride nanoprobes for ultrasensitive detection of prostate specific antigen. Chem Sci 7(4):2572–2578CrossRefGoogle Scholar
  36. 36.
    Tsang M-K, Ye W, Wang G, Li J, Yang M, Hao J (2016) Ultrasensitive detection of ebola virus oligonucleotide based on upconversion nanoprobe/nanoporous membrane system. ACS Nano 10(1):598–605CrossRefGoogle Scholar
  37. 37.
    Hlaváček A, Farka Z, Hübner M, Horňáková V, Němeček D, Niessner R, Skládal P, Knopp D, Gorris HH (2016) Competitive upconversion-linked immunosorbent assay for the sensitive detection of diclofenac. Anal Chem 88(11):6011–6017CrossRefGoogle Scholar
  38. 38.
    Zhang F (2015) In: Lockwood DJ (ed) Photon upconversion nanomaterials, vol 44. Springer, Berlin/HeidelbergGoogle Scholar
  39. 39.
    Wang F, Wang J, Liu X (2010) Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. Angew Chem Int Ed 49(41):7456–7460CrossRefGoogle Scholar
  40. 40.
    Jayakumar MKG, Idris NM, Huang K, Zhang Y (2014) A paradigm shift in the excitation wavelength of upconversion nanoparticles. Nanoscale 6(15):8441–8443CrossRefGoogle Scholar
  41. 41.
    Boyer J-C, Vetrone F, Cuccia LA, Capobianco JA (2006) Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+ via thermal decomposition of lanthanide trifluoroacetate precursors. J Am Chem Soc 128(23):7444–7445CrossRefGoogle Scholar
  42. 42.
    Liu R, Tu D, Liu Y, Zhu H, Li R, Zheng W, Ma E, Chen X (2012) Controlled synthesis and optical spectroscopy of lanthanide-doped KLaF4 nanocrystals. Nanoscale 4(15):4485–4491CrossRefGoogle Scholar
  43. 43.
    Chan C-F, Tsang M-K, Li H, Lan R, Chadbourne FL, Chan W-L, Law G-L, Cobb SL, Hao J, Wong W-T, Wong K-L (2014) Bifunctional up-converting lanthanide nanoparticles for selective in vitro imaging and inhibition of cyclin D as anti-cancer agents. J Mater Chem B 2(1):84–91CrossRefGoogle Scholar
  44. 44.
    Zeng S, Tsang M-K, Chan C-F, Wong K-L, Hao J (2012) PEG modified BaGdF5:Yb/Er nanoprobes for multi-modal upconversion fluorescent, in vivo X-ray computed tomography and biomagnetic imaging. Biomaterials 33(36):9232–9238CrossRefGoogle Scholar
  45. 45.
    Wong H-T, Tsang M-K, Chan C-F, Wong K-L, Fei B, Hao J (2013) In vitro cell imaging using multifunctional small sized KGdF4:Yb3+,Er3+ upconverting nanoparticles synthesized by a one-pot solvothermal process. Nanoscale 5(8):3465–3473CrossRefGoogle Scholar
  46. 46.
    Zeng S, Tsang M-K, Chan C-F, Wong K-L, Fei B, Hao J (2012) Dual-modal fluorescent/magnetic bioprobes based on small sized upconversion nanoparticles of amine-functionalized BaGdF5:Yb/Er. Nanoscale 4(16):5118–5124CrossRefGoogle Scholar
  47. 47.
    Tsang M-K, Chan C-F, Wong K-L, Hao J (2015) Comparative studies of upconversion luminescence characteristics and cell bioimaging based on one-step synthesized upconversion nanoparticles capped with different functional groups. J Lumin 157:172–178CrossRefGoogle Scholar
  48. 48.
    Bogdan N, Vetrone F, Ozin GA, Capobianco JA (2011) Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles. Nano Lett 11(2):835–840CrossRefGoogle Scholar
  49. 49.
    Tian J, Zeng X, Xie X, Han S, Liew O, Chen Y, Wang L, Liu X (2015) Intracellular adenosine triphosphate deprivation through lanthanide-doped nanoparticles. J Am Chem Soc 137(20):6550–6558CrossRefGoogle Scholar
  50. 50.
    Sprawls P (2000) Magnetic resonance imaging: principles, methods, and techniques. Medical Physics, MadisonGoogle Scholar
  51. 51.
    Wong H-T, Chan HLW, Hao JH (2009) Magnetic and luminescent properties of multifunctional GdF3:Eu3+ nanoparticles. Appl Phys Lett 95(2):022512–022514CrossRefGoogle Scholar
  52. 52.
    Chen H, Qi B, Moore T, Colvin DC, Crawford T, Gore JC, Alexis F, Mefford OT, Anker JN (2014) Synthesis of brightly PEGylated luminescent magnetic upconversion nanophosphors for deep tissue and dual MRI imaging. Small 10(1):160–168CrossRefGoogle Scholar
  53. 53.
    Liu B, Li C, Ma P, Chen Y, Zhang Y, Hou Z, Huang S, Lin J (2015) Multifunctional NaYF4:Yb,Er@mSiO2@Fe3O4-PEG nanoparticles for UCL/MR bioimaging and magnetically targeted drug delivery. Nanoscale 7(5):1839–1848CrossRefGoogle Scholar
  54. 54.
    Wang C, Cheng L, Xu H, Liu Z (2012) Towards whole-body imaging at the single cell level using ultra-sensitive stem cell labeling with oligo-arginine modified upconversion nanoparticles. Biomaterials 33(19):4872–4881CrossRefGoogle Scholar
  55. 55.
    Chen C, Kang N, Xu T, Wang D, Ren L, Guo X (2015) Core-shell hybrid upconversion nanoparticles carrying stable nitroxide radicals as potential multifunctional nanoprobes for upconversion luminescence and magnetic resonance dual-modality imaging. Nanoscale 7(12):5249–5261CrossRefGoogle Scholar
  56. 56.
    Idris NM, Gnanasammandhan MK, Zhang J, Ho PC, Mahendran R, Zhang Y (2012) In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat Med 18(10):1580–1585CrossRefGoogle Scholar
  57. 57.
    Liu C, Gao Z, Zeng J, Hou Y, Fang F, Li Y, Qiao R, Shen L (2013) Magnetic/upconversion fluorescent NaGdF4:Yb,Er nanoparticle-based dual-modal molecular probes for imaging tiny tumors in vivo. ACS Nano 7(8):7227–7240CrossRefGoogle Scholar
  58. 58.
    Xia A, Gao Y, Zhou J, Li C, Yang T, Wu D, Wu L, Li F (2011) Core-shell NaYF4:Yb3+,Tm3+@FexOy nanocrystals for dual-modality T2-enhanced magnetic resonance and NIR-to-NIR upconversion luminescent imaging of small-animal lymphatic node. Biomaterials 32(29):7200–7208CrossRefGoogle Scholar
  59. 59.
    Zeng L, Xiang L, Ren W, Zheng J, Li T, Chen B, Zhang J, Mao C, Li A, Wu A (2013) Multifunctional photosensitizer-conjugated core–shell Fe3O4@NaYF4:Yb/Er nanocomplexes and their applications in T2-weighted magnetic resonance/upconversion luminescence imaging and photodynamic therapy of cancer cells. RSC Adv 3(33):13915–13925CrossRefGoogle Scholar
  60. 60.
    Lee J, Gordon AC, Kim H, Park W, Cho S, Lee B, Larson AC, Rozhkova EA, Kim D (2016) Targeted multimodal nano-reporters for pre-procedural MRI and intra-operative image-guidance. Biomaterials 109:69–77CrossRefGoogle Scholar
  61. 61.
    Sun Y, Yu M, Liang S, Zhang Y, Li C, Mou T, Yang W, Zhang X, Li B, Huang C, Li F (2011) Fluorine-18 labeled rare-earth nanoparticles for positron emission tomography (PET) imaging of sentinel lymph node. Biomaterials 32(11):2999–3007CrossRefGoogle Scholar
  62. 62.
    Cao T, Yang Y, Sun Y, Wu Y, Gao Y, Feng W, Li F (2013) Biodistribution of sub-10 nm PEG-modified radioactive/upconversion nanoparticles. Biomaterials 34(29):7127–7134CrossRefGoogle Scholar
  63. 63.
    Peng J, Sun Y, Zhao L, Wu Y, Feng W, Gao Y, Li F (2013) Polyphosphoric acid capping radioactive/upconverting NaLuF4:Yb,tm,153Sm nanoparticles for blood pool imaging in vivo. Biomaterials 34(37):9535–9544CrossRefGoogle Scholar
  64. 64.
    Martin KH, Dayton PA (2013) Current status and prospects for microbubbles in ultrasound theranostics. Wiley Interdiscip Rev Nanomed Nanobiotechnol 5(4):329–345CrossRefGoogle Scholar
  65. 65.
    Su L, Gong X, Wang S, Jin B, Lin M, You M, Zong Y, Wan M, Xu F (2015) Microbubble embedded with upconversion nanoparticles as a bimodal contrast agent for fluorescence and ultrasound imaging. Nanotechnology 26(34):345601CrossRefGoogle Scholar
  66. 66.
    Nie L, Chen X (2014) Structural and functional photoacoustic molecular tomography aided by emerging contrast agents. Chem Soc Rev 43(20):7132–7170CrossRefGoogle Scholar
  67. 67.
    Wang LV, Hu S (2012) Photoacoustic tomography: In vivo imaging from organelles to organs. Science 335(6075):1458–1462CrossRefGoogle Scholar
  68. 68.
    Lee D, Koo H, Sun I, Ryu JH, Kim K (2012) Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem Soc Rev 41(7):2656–2672CrossRefGoogle Scholar
  69. 69.
    Hu S, Maslov K, Wang LV (2011) Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed. Opt Lett 36(7):1134–1136CrossRefGoogle Scholar
  70. 70.
    Yao J, Wang L, Yang J, Maslov KI, Wong TTW, Li L, Huang C, Zou J, Wang LV (2015) High-speed label-free functional photoacoustic microscopy of mouse brain in action. Nat Methods 12(5):407–410CrossRefGoogle Scholar
  71. 71.
    Wang L, Maslov K, Wang LV (2013) Single-cell label-free photoacoustic flowoxigraphy in vivo. Proc Natl Acad Sci 110(15):5759–5764CrossRefGoogle Scholar
  72. 72.
    Sheng Y, Liao L-D, Thakor N, Tan MC (2014) Rare-earth doped particles as dual-modality contrast agent for minimally-invasive luminescence and dual-wavelength photoacoustic imaging. Sci Rep 4:6562CrossRefGoogle Scholar
  73. 73.
    Maji SK, Sreejith S, Joseph J, Lin M (2014) Upconversion nanoparticles as a contrast agent for photoacoustic imaging in live mice. Adv Mater 26(32):5633–5638CrossRefGoogle Scholar
  74. 74.
    Shen J-W, Yang C-X, Dong L-X, Sun H-R, Gao K, Yan X-P (2013) Incorporation of computed tomography and magnetic resonance imaging function into NaYF4: Yb/Tm upconversion nanoparticles for in vivo trimodal bioimaging. Anal Chem 85(24):12166–12172CrossRefGoogle Scholar
  75. 75.
    Xia A, Chen M, Gao Y, Wu D, Feng W, Li F (2012) Gd3+ complex-modified NaLuF4-based upconversion nanophosphors for trimodality imaging of NIR-to-NIR upconversion luminescence, X-ray computed tomography and magnetic resonance. Biomaterials 33(21):5394–5405CrossRefGoogle Scholar
  76. 76.
    Liu Z, Dong K, Liu J, Han X, Ren J, Qu X (2014) Anti-biofouling polymer-decorated lutetium-based nanoparticulate contrast agents for in vivo high-resolution trimodal imaging. Small 10(12):2429–2438CrossRefGoogle Scholar
  77. 77.
    Dai Y, Xiao H, Liu J, Yuan Q, Ma P, Yang D, Li C, Cheng Z, Hou Z, Yang P, Lin J (2013) In vivo multimodality imaging and cancer therapy by near-infrared light-triggered trans-platinum pro-drug-conjugated upconverison nanoparticles. J Am Chem Soc 135(50):18920–18929CrossRefGoogle Scholar
  78. 78.
    Xiao Q, Zheng X, Bu W, Ge W, Zhang S, Chen F, Xing H, Ren Q, Fan W, Zhao K, Hua Y, Shi J (2013) A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy. J Am Chem Soc 135(35):13041–13048CrossRefGoogle Scholar
  79. 79.
    Xue Z, Yi Z, Li X, Li Y, Jiang M, Liu H, Zeng S (2017) Upconversion optical/magnetic resonance imaging-guided small tumor detection and in vivo tri-modal bioimaging based on high-performance luminescent nanorods. Biomaterials 115:90–103CrossRefGoogle Scholar
  80. 80.
    Xing H, Bu W, Zhang S, Zheng X, Li M, Chen F, He Q, Zhou L, Peng W, Hua Y, Shi J (2012) Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging. Biomaterials 33(4):1079–1089CrossRefGoogle Scholar
  81. 81.
    Liu Y, Kang N, Lv J, Zhou Z, Zhao Q, Ma L, Chen Z (2016) Deep photoacoustic/luminescence/magnetic resonance multimodal imaging in living subjects using high- efficiency upconversion nanocomposites. Adv Mater 28(30):6411–6419CrossRefGoogle Scholar
  82. 82.
    Sun Y, Zhu X, Peng J, Li F (2013) Core-shell lanthanide upconversion nanophosphors as four-modal probes for tumor angiogenesis imaging. ACS Nano 7(12):11290–11300CrossRefGoogle Scholar
  83. 83.
    Rieffel J, Chen F, Kim J, Chen G, Shao W, Shao S, Chitgupi U, Hernandez R, Graves SA, Nickles RJ, Prasad PN, Kim C, Cai W, Lovell JF (2015) Hexamodal imaging with porphyrin-phospholipid-coated upconversion nanoparticles. Adv Mater 27(10):1785–1790CrossRefGoogle Scholar
  84. 84.
    Bünzli J-CG (2010) Lanthanide luminescence for biomedical analyses and imaging. Chem Rev 110(5):2729–2755CrossRefGoogle Scholar
  85. 85.
    Eliseeva SV, Bünzli J-CG (2010) Lanthanide luminescence for functional materials and bio-sciences. Chem Soc Rev 39(1):189–227CrossRefGoogle Scholar
  86. 86.
    Zhang F, Haushalter RC, Haushalter RW, Shi Y, Zhang Y, Ding K, Zhao D, Stucky GD (2011) Rare-earth upconverting nanobarcodes for multiplexed biological detection. Small 7(14):1972–1976CrossRefGoogle Scholar
  87. 87.
    Wu S, Duan N, Zhu C, Ma X, Wang M, Wang Z (2011) Magnetic nanobead-based immunoassay for the simultaneous detection of aflatoxin B1 and ochratoxin A using upconversion nanoparticles as multicolor labels. Biosens Bioelectron 30(1):35–42CrossRefGoogle Scholar
  88. 88.
    Anas A, Akita H, Harashima H, Itoh T, Ishikawa M, Biju V (2008) Photosensitized breakage and damage of DNA by CdSe-ZnS quantum dots. J Phys Chem B 112(32):10005–10011CrossRefGoogle Scholar
  89. 89.
    Song K, Kong X, Liu X, Zhang Y, Zeng Q, Tu L, Shi Z, Zhang H (2012) Aptamer optical biosensor without bio-breakage using upconversion nanoparticles as donors. Chem Commun 48(8):1156–1158CrossRefGoogle Scholar
  90. 90.
    Li C, Liu J, Alonso S, Li F, Zhang Y (2012) Upconversion nanoparticles for sensitive and in-depth detection of Cu2+ ions. Nanoscale 4(19):6065–6071CrossRefGoogle Scholar
  91. 91.
    Yao L, Zhou J, Liu J, Feng W, Li F (2012) Iridium-complex-modified upconversion nanophosphors for effective LRET detection of cyanide anions in pure water. Adv Funct Mater 22(13):2667–2672CrossRefGoogle Scholar
  92. 92.
    Tu N, Wang L (2013) Surface plasmon resonance enhanced upconversion luminescence in aqueous media for TNT selective detection. Chem Commun 49(56):6319–6321CrossRefGoogle Scholar
  93. 93.
    Liu J, Liu Y, Bu W, Bu J, Sun Y, Du J, Shi J (2014) Ultrasensitive nanosensors based on upconversion nanoparticles for selective hypoxia imaging in vivo upon near-infrared excitation. J Am Chem Soc 136(27):9701–9709CrossRefGoogle Scholar
  94. 94.
    Gu B, Zhou Y, Zhang X, Liu X, Zhang Y, Marks R, Zhang H, Liu X, Zhang Q (2016) Thiazole derivative-modified upconversion nanoparticles for Hg2+ detection in living cells. Nanoscale 8(1):276–282CrossRefGoogle Scholar
  95. 95.
    Kale V, Päkkilä H, Vainio J, Ahomaa A, Sirkka N, Lyytikäinen A, Talha SM, Kutsaya A, Waris M, Julkunen I, Soukka T (2016) Spectrally and spatially multiplexed serological array-in-well assay utilizing two-color upconversion luminescence imaging. Anal Chem 88(8):4470–4477CrossRefGoogle Scholar
  96. 96.
    Sirkka N, Lyytikäinen A, Savukoski T, Soukka T (2016) Upconverting nanophosphors as reporters in a highly sensitive heterogeneous immunoassay for cardiac troponin I. Anal Chim Acta 925:82–87CrossRefGoogle Scholar
  97. 97.
    Zhao P, Wu Y, Zhu Y, Yang X, Jiang X, Xiao J, Zhang Y, Li C (2014) Upconversion fluorescent strip sensor for rapid determination of Vibrio anguillarum. Nanoscale 6(7):3804–3809CrossRefGoogle Scholar
  98. 98.
    Huang P, Zheng W, Zhou S, Tu D, Chen Z, Zhu H, Li R, Ma E, Huang M, Chen X (2014) Lanthanide-doped LiLuF4 upconversion nanoprobes for the detection of disease biomarkers. Angew Chem Int Ed 53(5):1252–1257CrossRefGoogle Scholar
  99. 99.
    Wu S, Duan N, Shi Z, Fang C, Wang Z (2014) Simultaneous aptasensor for multiplex pathogenic bacteria detection based on multicolor upconversion nanoparticles labels. Anal Chem 86(6):3100–3107CrossRefGoogle Scholar
  100. 100.
    Sun Y, Feng W, Yang P, Huang C, Li F (2015) The biosafety of lanthanide upconversion nanomaterials. Chem Soc Rev 44(6):1509–1525CrossRefGoogle Scholar
  101. 101.
    Jin J, Gu Y, Man CW, Cheng J, Xu Z, Zhang Y, Wang H, Lee VH, Cheng SH, Wong W (2011) Polymer-coated NaYF4:Yb3+,Er3+ upconversion nanoparticles for charge-dependent cellular imaging. ACS Nano 5(12):7838–7847CrossRefGoogle Scholar
  102. 102.
    Shi Y, Shi B, Dass AVE, Lu Y, Sayyadi N, Kautto L, Willows RD, Chung R, Piper J, Nevalainen H, Walsh B, Jin D, Packer NH (2016) Stable upconversion nanohybrid particles for specific prostate cancer cell immunodetection. Sci Rep 6:37533CrossRefGoogle Scholar
  103. 103.
    Xing H, Zheng X, Ren Q, Bu W, Ge W, Xiao Q, Zhang S, Wei C, Qu H, Wang Z, Hua Y, Zhou L, Peng W, Zhao K, Shi J (2013) Computed tomography imaging-guided radiotherapy by targeting upconversion nanocubes with significant imaging and radiosensitization enhancements. Sci Rep 3:1751CrossRefGoogle Scholar
  104. 104.
    Gnach A, Lipinski T, Bednarkiewicz A, Rybka J, Capobianco JA (2015) Upconverting nanoparticles: assessing the toxicity. Chem Soc Rev 44(6):1561–1584CrossRefGoogle Scholar
  105. 105.
    Xiong L, Yang T, Yang Y, Xu C, Li F (2010) Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors. Biomaterials 31(27):7078–7085CrossRefGoogle Scholar
  106. 106.
    Kumar AA, Hennek JW, Smith BS, Kumar S, Beattie P, Jain S, Rolland JP, Stossel TP, Chunda-Liyoka C, Whitesides GM (2015) From the bench to the field in low-cost diagnostics: two case studies. Angew Chem Int Ed 54(20):5836–5853CrossRefGoogle Scholar
  107. 107.
    Miller MB, Tang YW (2009) Basic concepts of microarrays and potential applications in clinical microbiology. Clin Microbiol Rev 22(4):611–633CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Applied PhysicsThe Hong Kong Polytechnic University, HKSARHung HomChina

Personalised recommendations