Plasmofluidics for Biosensing and Medical Diagnostics

  • Xiaolei Peng
  • Bharath Bangalore Rajeeva
  • Daniel Teal
  • Yuebing ZhengEmail author


Plasmofluidics, an extension of optofluidics into the nanoscale regime, merges plasmonics and micro-/nanofluidics for highly integrated and multifunctional lab on a chip. In this chapter, we focus on the applications of plasmofluidics in the versatile manipulation and sensing of biological cell, organelles, molecules, and nanoparticles, which underpin advanced biomedical diagnostics.



The authors acknowledge the financial support of the Beckman Young Investigator Program and the Office of Naval Research Young Investigator Program.


  1. 1.
    Tokel O, Inci F, Demirci U (2014) Advances in plasmonic technologies for point of care applications. Chem Rev 114(11):5728–5752CrossRefGoogle Scholar
  2. 2.
    Zhang W et al (2016) Portable point-of-care diagnostic devices. Anal Methods 8(44):7847–7867CrossRefGoogle Scholar
  3. 3.
    Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66(1):7–30CrossRefGoogle Scholar
  4. 4.
    Sin MLY et al (2014) Advances and challenges in biosensor-based diagnosis of infectious diseases. Expert Rev Mol Diagn 14(2):225–244CrossRefGoogle Scholar
  5. 5.
    Pai NP et al (2012) Point-of-care testing for infectious diseases: diversity, complexity, and barriers in low- and middle-income countries. PLoS Med 9(9):e1001306CrossRefGoogle Scholar
  6. 6.
    Han KN, Li CA, Seong GH (2013) Microfluidic chips for immunoassays. In: Cooks RG, Pemberton JE (eds) Annual review of analytical chemistry, vol 6. Annual Reviews, Palo Alto, pp 119–141Google Scholar
  7. 7.
    Wang M et al (2015) Plasmofluidics: merging light and fluids at the micro-/nanoscale. Small 11(35):4423–4444CrossRefGoogle Scholar
  8. 8.
    Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(6950):824–830CrossRefGoogle Scholar
  9. 9.
    Zheng YB et al (2012) Molecular plasmonics for biology and nanomedicine. Nanomedicine 7(5):751–770CrossRefGoogle Scholar
  10. 10.
    Juan ML, Righini M, Quidant R (2011) Plasmon nano-optical tweezers. Nat Photonics 5(6):349–356CrossRefGoogle Scholar
  11. 11.
    Wang DS, Fan SK (2016) Microfluidic surface plasmon resonance sensors: from principles to point-of-care applications. Sensors 16(8):1175CrossRefGoogle Scholar
  12. 12.
    Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111(6):3828–3857CrossRefGoogle Scholar
  13. 13.
    Singh P (2016) SPR biosensors: historical perspectives and current challenges. Sensors Actuators B Chem 229:110–130CrossRefGoogle Scholar
  14. 14.
    Huang JS, Yang YT (2015) Origin and future of plasmonic optical tweezers. Nano 5(2):1048–1065Google Scholar
  15. 15.
    Zheng YB et al (2008) Systematic investigation of localized surface plasmon resonance of long-range ordered Au nanodisk arrays. J Appl Phys 103(1):014308CrossRefGoogle Scholar
  16. 16.
    Garcés-Chávez V, Dholakia K, Spalding GC (2005) Extended-area optically induced organization of microparticles on a surface. Appl Phys Lett 86(3):031106CrossRefGoogle Scholar
  17. 17.
    Wang K et al (2010) Scannable plasmonic trapping using a gold stripe. Nano Lett 10(9):3506–3511CrossRefGoogle Scholar
  18. 18.
    Wang XD et al (2013) Theoretical and experimental study of surface plasmon radiation force on micrometer-sized spheres. Plasmonics 8(2):637–643CrossRefGoogle Scholar
  19. 19.
    Righini M et al (2007) Parallel and selective trapping in a patterned plasmonic landscape. Nat Phys 3(7):477–480CrossRefGoogle Scholar
  20. 20.
    Grigorenko AN et al (2008) Nanometric optical tweezers based on nanostructured substrates. Nat Photonics 2(6):365–370CrossRefGoogle Scholar
  21. 21.
    Kang J-H et al (2011) Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas. Nat Commun 2:582CrossRefGoogle Scholar
  22. 22.
    Roxworthy BJ et al (2012) Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting. Nano Lett 12(2):796–801CrossRefGoogle Scholar
  23. 23.
    Zheng Y et al (2014) Nano-optical conveyor belt, part II: demonstration of handoff between near-field optical traps. Nano Lett 14(6):2971–2976CrossRefGoogle Scholar
  24. 24.
    Lin L et al (2016) Bubble-pen lithography. Nano Lett 16(1):701–708CrossRefGoogle Scholar
  25. 25.
    Juan ML et al (2009) Self-induced back-action optical trapping of dielectric nanoparticles. Nat Phys 5(12):915–919CrossRefGoogle Scholar
  26. 26.
    Baffou G, Quidant R, García de Abajo FJ (2010) Nanoscale control of optical heating in complex plasmonic systems. ACS Nano 4(2):709–716CrossRefGoogle Scholar
  27. 27.
    Baffou G et al (2013) Photoinduced heating of nanoparticle arrays. ACS Nano 7(8):6478–6488CrossRefGoogle Scholar
  28. 28.
    Donner JS et al (2011) Plasmon-assisted optofluidics. ACS Nano 5(7):5457–5462CrossRefGoogle Scholar
  29. 29.
    Puiu M, Bala C (2016) SPR and SPR imaging: recent trends in developing nanodevices for detection and real-time monitoring of biomolecular events. Sensors 16(6):870CrossRefGoogle Scholar
  30. 30.
    Seefeld TH, Halpern AR, Corn RM (2012) On-chip synthesis of protein microarrays from DNA microarrays via coupled in vitro transcription and translation for surface plasmon resonance imaging biosensor applications. J Am Chem Soc 134(30):12358–12361CrossRefGoogle Scholar
  31. 31.
    Springer T, Piliarik M, Homola J (2010) Surface plasmon resonance sensor with dispersionless microfluidics for direct detection of nucleic acids at the low femtomole level. Sensors Actuators B-Chem 145(1):588–591CrossRefGoogle Scholar
  32. 32.
    Lee Y et al (2013) Tunable directive radiation of surface-plasmon diffraction gratings. Opt Express 21(3):2748–2756CrossRefGoogle Scholar
  33. 33.
    Krupin O et al (2013) Biosensing using straight long-range surface plasmon waveguides. Opt Express 21(1):698–709CrossRefGoogle Scholar
  34. 34.
    Szunerits S, Boukherroub R (2012) Sensing using localised surface plasmon resonance sensors. Chem Commun 48(72):8999–9010CrossRefGoogle Scholar
  35. 35.
    Unser S et al (2015) Localized surface plasmon resonance biosensing: current challenges and approaches. Sensors 15(7):15684–15716CrossRefGoogle Scholar
  36. 36.
    Escobedo C et al (2010) Flow-through vs flow-over: analysis of transport and binding in nanohole array plasmonic biosensors. Anal Chem 82(24):10015–10020CrossRefGoogle Scholar
  37. 37.
    Escobedo C et al (2012) Optofluidic concentration: plasmonic nanostructure as concentrator and sensor. Nano Lett 12(3):1592–1596CrossRefGoogle Scholar
  38. 38.
    Lee SY et al (2011) High-fidelity optofluidic on-chip sensors using well-defined gold nanowell crystals. Anal Chem 83(23):9174–9180CrossRefGoogle Scholar
  39. 39.
    Verellen N et al (2011) Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing. Nano Lett 11(2):391–397CrossRefGoogle Scholar
  40. 40.
    Zhang SP et al (2011) Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano Lett 11(4):1657–1663CrossRefGoogle Scholar
  41. 41.
    Shen Y et al (2012) Tuning the plasmon resonance of a nano-mouth array. Nanoscale 4(18):5576–5580CrossRefGoogle Scholar
  42. 42.
    Shen Y et al (2013) Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nat Commun 4:2381CrossRefGoogle Scholar
  43. 43.
    Lin L, Zheng Y (2015) Engineering of parallel plasmonic–photonic interactions for on-chip refractive index sensors. Nanoscale 7(28):12205–12214CrossRefGoogle Scholar
  44. 44.
    Lin L, Zheng Y (2015) Optimizing plasmonic nanoantennas via coordinated multiple coupling. Sci Rep 5:14788CrossRefGoogle Scholar
  45. 45.
    Petryayeva E, Krull UJ (2011) Localized surface plasmon resonance: nanostructures, bioassays and biosensing-a review. Anal Chim Acta 706(1):8–24CrossRefGoogle Scholar
  46. 46.
    Chen K et al (2015) Moiré nanosphere lithography. ACS Nano 9(6):6031–6040CrossRefGoogle Scholar
  47. 47.
    Wu Z et al (2015) Tunable multiband metasurfaces by moire nanosphere lithography. Nanoscale 7(48):20391–20396CrossRefGoogle Scholar
  48. 48.
    Escobedo C (2013) On-chip nanohole array based sensing: a review. Lab Chip 13(13):2445–2463CrossRefGoogle Scholar
  49. 49.
    Im H et al (2014) Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat Biotechnol 32(5):490–495CrossRefGoogle Scholar
  50. 50.
    Willets KA, Duyne RPV (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58(1):267–297CrossRefGoogle Scholar
  51. 51.
    Wong CL, Olivo M (2014) Surface plasmon resonance imaging sensors: a review. Plasmonics 9(4):809–824CrossRefGoogle Scholar
  52. 52.
    White IM, Yazdi SH, Yu WW (2012) Optofluidic SERS: synergizing photonics and microfluidics for chemical and biological analysis. Microfluid Nanofluid 13(2):205–216CrossRefGoogle Scholar
  53. 53.
    Cialla D et al (2012) Surface-enhanced Raman spectroscopy (SERS): progress and trends. Anal Bioanal Chem 403(1):27–54CrossRefGoogle Scholar
  54. 54.
    Schlucker S (2014) Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew Chem-Int Ed 53(19):4756–4795CrossRefGoogle Scholar
  55. 55.
    Huang JA et al (2015) SERS-enabled lab-on-a-chip systems. Adv Opt Mater 3(5):618–633CrossRefGoogle Scholar
  56. 56.
    Zhou J et al (2012) Convenient formation of nanoparticle aggregates on microfluidic chips for highly sensitive SERS detection of biomolecules. Anal Bioanal Chem 402(4):1601–1609CrossRefGoogle Scholar
  57. 57.
    Lin L et al (2016) Light-directed reversible assembly of plasmonic nanoparticles using plasmon-enhanced thermophoresis. ACS Nano 10(10):9659–9668CrossRefGoogle Scholar
  58. 58.
    Righini M et al (2009) Nano-optical trapping of rayleigh particles and Escherichia coli bacteria with resonant optical antennas. Nano Lett 9(10):3387–3391CrossRefGoogle Scholar
  59. 59.
    Huang L, Maerkl SJ, Martin OJF (2009) Integration of plasmonic trapping in a microfluidic environment. Opt Express 17(8):6018–6024CrossRefGoogle Scholar
  60. 60.
    Shoji T et al (2013) Permanent fixing or reversible trapping and release of DNA micropatterns on a gold nanostructure using continuous-wave or femtosecond-pulsed near-infrared laser light. J Am Chem Soc 135(17):6643–6648CrossRefGoogle Scholar
  61. 61.
    Nicoli F et al (2014) DNA translocations through solid-state plasmonic nanopores. Nano Lett 14(12):6917–6925CrossRefGoogle Scholar
  62. 62.
    Pang Y, Gordon R (2011) Optical trapping of a single protein. Nano Lett 12(1):402–406CrossRefGoogle Scholar
  63. 63.
    Zehtabi-Oskuie A et al (2013) Double nanohole optical trapping: dynamics and protein-antibody co-trapping. Lab Chip 13(13):2563–2568CrossRefGoogle Scholar
  64. 64.
    Al Balushi, A.A. And R. Gordon A label-free untethered approach to single-molecule protein binding kinetics. Nano Lett, 2014. 14(10): p. 5787–5791CrossRefGoogle Scholar
  65. 65.
    Ndukaife JC et al (2015) Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer. Nat Nanotechnol 11:53. Advance online publicationCrossRefGoogle Scholar
  66. 66.
    Berthelot J et al (2014) Three-dimensional manipulation with scanning near-field optical nanotweezers. Nat Nanotechnol 9(4):295–299CrossRefGoogle Scholar
  67. 67.
    Ndukaife JC, Shalaev VM, Boltasseva A (2016) Plasmonics-turning loss into gain. Science 351(6271):334–335CrossRefGoogle Scholar
  68. 68.
    Lin L et al (2017) Thermophoretic tweezers for low-power and versatile manipulation of biological cells. ACS Nano 11:3147CrossRefGoogle Scholar
  69. 69.
    Kang T et al (2010) Patterned multiplex pathogen DNA detection by Au particle-on-wire SERS sensor. Nano Lett 10(4):1189–1193CrossRefGoogle Scholar
  70. 70.
    Huang C et al (2012) Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection. Appl Phys Lett 100(17):173114CrossRefGoogle Scholar
  71. 71.
    Ngo HT et al (2013) Label-free DNA biosensor based on SERS molecular sentinel on nanowave chip. Anal Chem 85(13):6378–6383CrossRefGoogle Scholar
  72. 72.
    Wang H-N, Fales AM, Vo-Dinh T (2015) Plasmonics-based SERS nanobiosensor for homogeneous nucleic acid detection. Nanomedicine 11(4):811–814CrossRefGoogle Scholar
  73. 73.
    Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108(2):462–493CrossRefGoogle Scholar
  74. 74.
    Wang H-N et al (2013) Molecular sentinel-on-chip for SERS-based biosensing. Phys Chem Chem Phys 15(16):6008–6015CrossRefGoogle Scholar
  75. 75.
    Ngo HT et al (2014) Multiplex detection of disease biomarkers using SERS molecular sentinel-on-chip. Anal Bioanal Chem 406(14):3335–3344CrossRefGoogle Scholar
  76. 76.
    Ngo HT et al (2014) DNA bioassay-on-chip using SERS detection for dengue diagnosis. Analyst 139(22):5656–5660CrossRefGoogle Scholar
  77. 77.
    Mukherji S et al (2011) MicroRNAs can generate thresholds in target gene expression. Nat Genet 43(9):854–859CrossRefGoogle Scholar
  78. 78.
    Lu J et al (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834–838CrossRefGoogle Scholar
  79. 79.
    Volinia S et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103(7):2257–2261CrossRefGoogle Scholar
  80. 80.
    Jeffrey SS (2008) Cancer biomarker profiling with microRNAs. Nat Biotechnol 26(4):400–401CrossRefGoogle Scholar
  81. 81.
    Arata H, Hosokawa K, Maeda M (2014) Rapid sub-attomole microRNA detection on a portable microfluidic chip. Anal Sci 30(1):129–135CrossRefGoogle Scholar
  82. 82.
    Joshi GK et al (2014) Highly specific plasmonic biosensors for ultrasensitive microRNA detection in plasma from pancreatic cancer patients. Nano Lett 14(12):6955–6963CrossRefGoogle Scholar
  83. 83.
    Joshi GK et al (2015) Label-free nanoplasmonic-based short noncoding RNA sensing at attomolar concentrations allows for quantitative and highly specific assay of microRNA-10b in biological fluids and circulating exosomes. ACS Nano 9(11):11075–11089CrossRefGoogle Scholar
  84. 84.
    Choi S et al (2011) Monitoring protein distributions based on patterns generated by protein adsorption behavior in a microfluidic channel. Lab Chip 11(21):3681–3688CrossRefGoogle Scholar
  85. 85.
    Masson J-F, Zhao SS (2015) Plasmonic sensors for analysis of proteins and an oncologic drug in human serum. In: Vestergaard MDC et al (eds) Nanobiosensors and nanobioanalyses. Springer Japan, Tokyo, pp 305–333Google Scholar
  86. 86.
    Uludag Y, Tothill IE (2012) Cancer biomarker detection in serum samples using surface plasmon resonance and quartz crystal microbalance sensors with nanoparticle signal amplification. Anal Chem 84(14):5898–5904CrossRefGoogle Scholar
  87. 87.
    Acimovic SS et al (2014) LSPR chip for parallel, rapid, and sensitive detection of cancer markers in serum. Nano Lett 14(5):2636–2641CrossRefGoogle Scholar
  88. 88.
    Chen P et al (2015) Multiplex serum cytokine immunoassay using nanoplasmonic biosensor microarrays. ACS Nano 9(4):4173–4181CrossRefGoogle Scholar
  89. 89.
    Lee M et al (2012) SERS-based immunoassay using a gold array-embedded gradient microfluidic chip. Lab Chip 12(19):3720–3727CrossRefGoogle Scholar
  90. 90.
    He J et al (2015) Patterned plasmonic nanoparticle arrays for microfluidic and multiplexed biological assays. Anal Chem 87(22):11407–11414CrossRefGoogle Scholar
  91. 91.
    Ahijado-Guzmán R et al (2014) Plasmonic nanosensors for simultaneous quantification of multiple protein–protein binding affinities. Nano Lett 14(10):5528–5532CrossRefGoogle Scholar
  92. 92.
    Wu SH et al (2013) Optofluidic platform for real-time monitoring of live cell secretory activities using Fano resonance in gold nanoslits. Small 9(20):3532–3540CrossRefGoogle Scholar
  93. 93.
    Pallaoro A et al (2015) Rapid identification by surface-enhanced Raman spectroscopy of cancer cells at low concentrations flowing in a microfluidic channel. ACS Nano 9(4):4328–4336CrossRefGoogle Scholar
  94. 94.
    Liu Y et al (2015) Surface plasmon resonance biosensor based on smart phone platforms. Sci Rep 5:12864CrossRefGoogle Scholar
  95. 95.
    Pimkova K et al (2012) Surface plasmon resonance biosensor for the detection of VEGFR-1-a protein marker of myelodysplastic syndromes. Anal Bioanal Chem 402(1):381–387CrossRefGoogle Scholar
  96. 96.
    He P et al (2014) Ultrasensitive detection of thrombin using surface plasmon resonance and quartz crystal microbalance sensors by aptamer-based rolling circle amplification and nanoparticle signal enhancement. Chem Commun 50(12):1481–1484CrossRefGoogle Scholar
  97. 97.
    Truong PL, Kim BW, Sim SJ (2012) Rational aspect ratio and suitable antibody coverage of gold nanorod for ultra-sensitive detection of a cancer biomarker. Lab Chip 12(6):1102–1109CrossRefGoogle Scholar
  98. 98.
    Zijlstra P, Paulo PMR, Orrit M (2012) Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nat Nanotechnol 7(6):379–382CrossRefGoogle Scholar
  99. 99.
    Ament I et al (2012) Single unlabeled protein detection on individual plasmonic nanoparticles. Nano Lett 12(2):1092–1095CrossRefGoogle Scholar
  100. 100.
    Al Balushi AA, Zehtabi-Oskuie A, Gordon R (2013) Observing single protein binding by optical transmission through a double nanohole aperture in a metal film. Biomed Opt Express 4(9):1504–1511CrossRefGoogle Scholar
  101. 101.
    Im H et al (2012) Nanohole-based surface plasmon resonance instruments with improved spectral resolution quantify a broad range of antibody-ligand binding kinetics. Anal Chem 84(4):1941–1947CrossRefGoogle Scholar
  102. 102.
    Cetin AE et al (2014) Handheld high-throughput plasmonic biosensor using computational on-chip imaging. Light Sci Appl 3:e122CrossRefGoogle Scholar
  103. 103.
    Soler M et al (2016) Label-free nanoplasmonic sensing of tumor-associate autoantibodies for early diagnosis of colorectal cancer. Anal Chim Acta 930:31–38CrossRefGoogle Scholar
  104. 104.
    Escobedo C et al (2013) Quantification of ovarian cancer markers with integrated microfluidic concentration gradient and imaging nanohole surface plasmon resonance. Analyst 138(5):1450–1458CrossRefGoogle Scholar
  105. 105.
    Ruemmele JA et al (2013) A localized surface plasmon resonance imaging instrument for multiplexed biosensing. Anal Chem 85(9):4560–4566CrossRefGoogle Scholar
  106. 106.
    Couture M et al (2016) 96-well plasmonic sensing with nanohole arrays. ACS Sensors 1(3):287–294CrossRefGoogle Scholar
  107. 107.
    Saha A, Jana NR (2015) Paper-based microfluidic approach for surface-enhanced Raman spectroscopy and highly reproducible detection of proteins beyond picomolar concentration. ACS Appl Mater Interfaces 1:996–1003CrossRefGoogle Scholar
  108. 108.
    Chon H et al (2010) On-chip immunoassay using surface-enhanced Raman scattering of hollow gold nanospheres. Anal Chem 82(12):5290–5295CrossRefGoogle Scholar
  109. 109.
    Hwang H et al (2010) Optoelectrofluidic sandwich immunoassays for detection of human tumor marker using surface-enhanced raman scattering. Anal Chem 82(18):7603–7610CrossRefGoogle Scholar
  110. 110.
    Lee M et al (2011) Highly reproducible immunoassay of cancer markers on a gold-patterned microarray chip using surface-enhanced Raman scattering imaging. Biosens Bioelectron 26(5):2135–2141CrossRefGoogle Scholar
  111. 111.
    Zou K et al (2016) Picomolar detection of carcinoembryonic antigen in whole blood using microfluidics and surface-enhanced Raman spectroscopy. Electrophoresis 37(5–6):786–789CrossRefGoogle Scholar
  112. 112.
    Kaminska A et al (2015) Detection of hepatitis B virus antigen from human blood: SERS immunoassay in a microfluidic system. Biosens Bioelectron 66:461–467CrossRefGoogle Scholar
  113. 113.
    Yanik AA et al (2010) An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media. Nano Lett 10(12):4962–4969CrossRefGoogle Scholar
  114. 114.
    Walter A et al (2011) Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device. Lab Chip 11(6):1013–1021CrossRefGoogle Scholar
  115. 115.
    Tokel O et al (2015) Portable microfluidic integrated plasmonic platform for pathogen detection. Sci Rep 5:9152CrossRefGoogle Scholar
  116. 116.
    Andreou C et al (2013) Rapid detection of drugs of abuse in saliva using surface enhanced Raman spectroscopy and microfluidics. ACS Nano 7(8):7157–7164CrossRefGoogle Scholar
  117. 117.
    Inci F et al (2013) Nanoplasmonic quantitative detection of intact viruses from unprocessed whole blood. ACS Nano 7(6):4733–4745CrossRefGoogle Scholar
  118. 118.
    Wang S et al (2012) Portable microfluidic chip for detection of Escherichia coli in produce and blood. Int J Nanomedicine 7:2591–2600Google Scholar
  119. 119.
    Durmus NG et al (2013) Fructose enhanced reduction of bacterial growth on nanorough surfaces. MRS Proc 1498:73–78Google Scholar
  120. 120.
    Tasoglu S et al (2013) Manipulating biological agents and cells in micro-scale volumes for applications in medicine. Chem Soc Rev 42(13):5788–5808CrossRefGoogle Scholar
  121. 121.
    Wang S et al (2010) Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance. Proc Natl Acad Sci 107(37):16028–16032CrossRefGoogle Scholar
  122. 122.
    Florschütz K et al (2013) ‘Phytochip’: on-chip detection of phytopathogenic RNA viruses by a new surface plasmon resonance platform. J Virol Methods 189(1):80–86CrossRefGoogle Scholar
  123. 123.
    Srivastava SK et al (2015) Highly sensitive and specific detection of E. Coli by a SERS nanobiosensor chip utilizing metallic nanosculptured thin films. Analyst 140(9):3201–3209CrossRefGoogle Scholar
  124. 124.
    Olaru A et al (2015) Surface plasmon resonance (SPR) biosensors in pharmaceutical analysis. Crit Rev Anal Chem 45(2):97–105CrossRefGoogle Scholar
  125. 125.
    Chen S et al (2012) Visualization of high-throughput and label-free antibody-polypeptide binding for drug screening based on microarrays and surface plasmon resonance imaging. J Biomed Opt 17(1):0150051–0150058CrossRefGoogle Scholar
  126. 126.
    Izake EL (2007) Chiral discrimination and enantioselective analysis of drugs: an overview. J Pharm Sci 96(7):1659–1676CrossRefGoogle Scholar
  127. 127.
    Guo L et al (2012) Enantioselective analysis of melagatran via an LSPR biosensor integrated with a microfluidic chip. Lab Chip 12(20):3901–3906CrossRefGoogle Scholar
  128. 128.
    Wu Z, Zheng YB (2017) Moiré chiral metamaterials. Adv Opt Mater 5. (in Press)Google Scholar
  129. 129.
    Narsaiah K et al (2012) Optical biosensors for food quality and safety assurance – a review. J Food Sci Technol 49(4):383–406CrossRefGoogle Scholar
  130. 130.
    Fernandez F et al (2010) A label-free and portable multichannel surface plasmon resonance immunosensor for on site analysis of antibiotics in milk samples. Biosens Bioelectron 26(4):1231–1238CrossRefGoogle Scholar
  131. 131.
    Zhao SS et al (2015) Miniature multi-channel SPR instrument for methotrexate monitoring in clinical samples. Biosens Bioelectron 64:664–670CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiaolei Peng
    • 1
  • Bharath Bangalore Rajeeva
    • 1
  • Daniel Teal
    • 2
  • Yuebing Zheng
    • 1
    • 2
    Email author
  1. 1.Materials Science and Engineering Program and Texas Materials InstituteThe University of Texas at AustinAustinUSA
  2. 2.Department of Mechanical Engineering, Materials Science and Engineering Program, Texas Materials InstituteThe University of Texas at AustinAustinUSA

Personalised recommendations