ATR-FTIR Spectroscopy Tools for Medical Diagnosis and Disease Investigation

  • Maria Paraskevaidi
  • Pierre L. Martin-Hirsch
  • Francis L. MartinEmail author


Vibrational spectroscopic techniques are increasingly utilized in biomedical research. Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy has been applied extensively to investigate various diseases by determining the chemical and molecular differences coming with the disease. Being label-free, nondestructive, and inexpensive, biospectroscopy could potentially make a perfect diagnostic tool in the years to come.



We would like to thank all our collaborators over the years and all the study participants who have contributed to our research. The kind generosity of Rosemere Cancer Foundation in supporting our studies is also acknowledged; M.P. is a current recipient of one of their PhD studentships. We would also like to thank our colleagues at Lancashire Teaching Hospital NHS Trust who have selflessly facilitated many of our studies over the years. Finally, we would like to acknowledge the manufacturers for permission to copy and republish images of their instruments.


  1. 1.
    Theophilou G, Paraskevaidi M, Lima KM, Kyrgiou M, Martin-Hirsch PL, Martin FL (2015) Extracting biomarkers of commitment to cancer development: potential role of vibrational spectroscopy in systems biology. Expert Rev Mol Diagn 15(5):693–713CrossRefGoogle Scholar
  2. 2.
    Stuart B, Infrared Spectroscopy: Fundamentals and Applications. Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons, Inc. 2005;
  3. 3.
    Movasaghi Z, Rehman S, ur Rehman DI (2008) Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl Spectrosc Rev 43(2):134–179CrossRefGoogle Scholar
  4. 4.
    Baker MJ, Trevisan J, Bassan P, Bhargava R, Butler HJ, Dorling KM et al (2014) Using Fourier transform IR spectroscopy to analyze biological materials. Nat Protoc 9(8):1771–1791CrossRefGoogle Scholar
  5. 5.
    Mackanos MA, Contag CH (2010) Fiber-optic probes enable cancer detection with FTIR spectroscopy. Trends Biotechnol 28(6):317–323CrossRefGoogle Scholar
  6. 6.
    Sahu R, Mordechai S (2005) Fourier transform infrared spectroscopy in cancer detection. Future Oncol 1(5):635–647CrossRefGoogle Scholar
  7. 7.
    Lechowicz L, Chrapek M, Gaweda J, Urbaniak M, Konieczna I (2016) Use of Fourier-transform infrared spectroscopy in the diagnosis of rheumatoid arthritis: a pilot study. Mol Biol Rep 43(12):1321–1326CrossRefGoogle Scholar
  8. 8.
    Sitole L, Steffens F, Krüger TPJ, Meyer D (2014) Mid-ATR-FTIR spectroscopic profiling of HIV/AIDS sera for novel systems diagnostics in global health. Omics J Integr Biol 18(8):513–523CrossRefGoogle Scholar
  9. 9.
    Markus APJ, Swinkels DW, Jakobs BS, Wevers RA, Trijbels JF, Willems HL (2001) New technique for diagnosis and monitoring of alcaptonuria: quantification of homogentisic acid in urine with mid-infrared spectrometry. Anal Chim Acta 429(2):287–292CrossRefGoogle Scholar
  10. 10.
    Khoshmanesh A, Dixon MWA, Kenny S, Tilley L, McNaughton D, Wood BR (2014) Detection and quantification of early-stage malaria parasites in laboratory infected erythrocytes by attenuated Total reflectance infrared spectroscopy and multivariate analysis. Anal Chem 86(9):4379–4386CrossRefGoogle Scholar
  11. 11.
    Coopman R, Van de Vyver T, Kishabongo AS, Katchunga P, Van Aken EH, Cikomola J et al (2017) Glycation in human fingernail clippings using ATR-FTIR spectrometry, a new marker for the diagnosis and monitoring of diabetes mellitus. Clin Biochem 50(1–2):62–67CrossRefGoogle Scholar
  12. 12.
    Yoshida S, Yoshida M, Yamamoto M, Takeda J (2013) Optical screening of diabetes mellitus using non-invasive Fourier-transform infrared spectroscopy technique for human lip. J Pharm Biomed Anal 76:169–176CrossRefGoogle Scholar
  13. 13.
    Grimard V, Li C, Ramjeesingh M, Bear CE, Goormaghtigh E, Ruysschaert JM (2004) Phosphorylation-induced conformational changes of cystic fibrosis transmembrane conductance regulator monitored by attenuated Total reflection-Fourier transform IR spectroscopy and fluorescence spectroscopy. J Biol Chem 279(7):5528–5536CrossRefGoogle Scholar
  14. 14.
    Aksoy C, Guliyev A, Kilic E, Uckan D, Severcan F (2012) Bone marrow mesenchymal stem cells in patients with beta thalassemia major: molecular analysis with attenuated total reflection-Fourier transform infrared spectroscopy study as a novel method. Stem Cells Dev 21(11):2000–2011CrossRefGoogle Scholar
  15. 15.
    Khanmohammadi M, Garmarudi AB, Ramin M, Ghasemi K (2013) Diagnosis of renal failure by infrared spectrometric analysis of human serum samples and soft independent modeling of class analogy. Microchem J 106:67–72CrossRefGoogle Scholar
  16. 16.
    Mulready KJ, McGoldrick D (2012) The establishment of a standard and real patient kidney stone library utilizing Fourier transform-infrared spectroscopy with a diamond ATR accessory. Urol Res 40(5):483–498CrossRefGoogle Scholar
  17. 17.
    Graça G, Moreira AS, Correia AJV, Goodfellow BJ, Barros AS, Duarte IF et al (2013) Mid-infrared (MIR) metabolic fingerprinting of amniotic fluid: a possible avenue for early diagnosis of prenatal disorders? Anal Chim Acta 764:24–31CrossRefGoogle Scholar
  18. 18.
    Sarroukh R, Goormaghtigh E, Ruysschaert J-M, Raussens V (2013) ATR-FTIR: a “rejuvenated” tool to investigate amyloid proteins. Biochim Biophys Acta Biomembr 1828(10):2328–2338CrossRefGoogle Scholar
  19. 19.
    Taylor SE, Cheung KT, Patel II, Trevisan J, Stringfellow HF, Ashton KM et al (2011) Infrared spectroscopy with multivariate analysis to interrogate endometrial tissue: a novel and objective diagnostic approach. Br J Cancer 104(5):790–797CrossRefGoogle Scholar
  20. 20.
    Wong PTT, Lacelle S, Fung MFK, Senterman M, Mikhael NZ (1995) Characterization of exfoliated cells and tissues from human endocervix and ectocervix by FTIR and ATR/FTIR spectroscopy. Biospectroscopy 1(5):357–364CrossRefGoogle Scholar
  21. 21.
    Gajjar K, Heppenstall LD, Pang W, Ashton KM, Trevisan J, Patel II et al (2013) Diagnostic segregation of human brain tumours using Fourier-transform infrared and/or Raman spectroscopy coupled with discriminant analysis. Anal Methods 5(1):89–102CrossRefGoogle Scholar
  22. 22.
    Staniszewska E, Malek K, Baranska M (2014) Rapid approach to analyze biochemical variation in rat organs by ATR FTIR spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 118:981–986CrossRefGoogle Scholar
  23. 23.
    Theophilou G, Lima KMG, Martin-Hirsch PL, Stringfellow HF, Martin FL (2016) ATR-FTIR spectroscopy coupled with chemometric analysis discriminates normal, borderline and malignant ovarian tissue: classifying subtypes of human cancer. Analyst 141(2):585–594CrossRefGoogle Scholar
  24. 24.
    Sun X, Xu Y, Wu J, Zhang Y, Sun K (2013) Detection of lung cancer tissue by attenuated total reflection-Fourier transform infrared spectroscopy-a pilot study of 60 samples. J Surg Res 179(1):33–38CrossRefGoogle Scholar
  25. 25.
    Kazarian SG, Chan KLA (2006) Applications of ATR-FTIR spectroscopic imaging to biomedical samples. Biochim Biophys Acta Biomembr 1758(7):858–867CrossRefGoogle Scholar
  26. 26.
    Lima CA, Goulart VP, Côrrea L, Pereira TM, Zezell DM (2015) ATR-FTIR spectroscopy for the assessment of biochemical changes in skin due to cutaneous squamous cell carcinoma. Int J Mol Sci 16(4):6621–6630CrossRefGoogle Scholar
  27. 27.
    Theophilou G, Lima KMG, Briggs M, Martin-Hirsch PL, Stringfellow HF, Martin FLA (2015) Biospectroscopic analysis of human prostate tissue obtained from different time periods points to a trans-generational alteration in spectral phenotype. Sci Rep 5:13465CrossRefGoogle Scholar
  28. 28.
    Cui L, Butler HJ, Martin-Hirsch PL, Martin FL (2016) Aluminium foil as a potential substrate for ATR-FTIR, transflection FTIR or Raman spectrochemical analysis of biological specimens. Anal Methods 8(3):481–487CrossRefGoogle Scholar
  29. 29.
    Walsh MJ, Kajdacsy-Balla A, Holton SE, Bhargava R (2012) Attenuated total reflectance Fourier-transform infrared spectroscopic imaging for breast histopathology. Vib Spectrosc 60:23–28CrossRefGoogle Scholar
  30. 30.
    Tian P, Zhang W, Zhao H, Lei Y, Cui L, Wang W et al (2015) Intraoperative diagnosis of benign and malignant breast tissues by fourier transform infrared spectroscopy and support vector machine classification. Int J Clin Exp Med 8(1):972Google Scholar
  31. 31.
    Zohdi V, Whelan DR, Wood BR, Pearson JT, Bambery KR, Black MJ (2015) Importance of tissue preparation methods in FTIR micro-spectroscopical analysis of biological tissues:‘traps for new users. PLoS One 10(2):e0116491CrossRefGoogle Scholar
  32. 32.
    Dogan A, Lasch P, Neuschl C, Millrose MK, Alberts R, Schughart K et al (2013) ATR-FTIR spectroscopy reveals genomic loci regulating the tissue response in high fat diet fed BXD recombinant inbred mouse strains. BMC Genomics 14(1):386CrossRefGoogle Scholar
  33. 33.
    Yao H, Shi X, Zhang Y (2014) The use of FTIR-ATR spectrometry for evaluation of surgical resection margin in colorectal cancer: a pilot study of 56 samples. Journal of. Spectroscopy 2014:4Google Scholar
  34. 34.
    Li Q-B, Sun X-J, Y-Z X, Yang L-M, Zhang Y-F, Weng S-F et al (2005) Use of Fourier-transform infrared spectroscopy to rapidly diagnose gastric endoscopic biopsies. World J Gastroenterol: WJG 11(25):3842–3845CrossRefGoogle Scholar
  35. 35.
    Wang TD, Triadafilopoulos G, Crawford JM, Dixon LR, Bhandari T, Sahbaie P et al (2007) Detection of endogenous biomolecules in Barrett's esophagus by Fourier transform infrared spectroscopy. Proc Natl Acad Sci 104(40):15864–15869CrossRefGoogle Scholar
  36. 36.
    Bird B, Miljkovic M, Remiszewski S, Akalin A, Kon M, Diem M (2012) Infrared spectral histopathology (SHP): a novel diagnostic tool for the accurate classification of lung cancer. Lab Investig 92(9):1358–1373CrossRefGoogle Scholar
  37. 37.
    Gajjar K, Ahmadzai AA, Valasoulis G, Trevisan J, Founta C, Nasioutziki M et al (2014) Histology verification demonstrates that biospectroscopy analysis of cervical cytology identifies underlying disease more accurately than conventional screening: removing the confounder of discordance. PLoS One 9(1):e82416CrossRefGoogle Scholar
  38. 38.
    Martin FL, Kelly JG, Llabjani V, Martin-Hirsch PL, Patel II, Trevisan J et al (2010) Distinguishing cell types or populations based on the computational analysis of their infrared spectra. Nat Protoc 5(11):1748–1760CrossRefGoogle Scholar
  39. 39.
    Andrew Chan KL, Kazarian SG (2016) Attenuated total reflection Fourier-transform infrared (ATR-FTIR) imaging of tissues and live cells. Chem Soc Rev 45(7):1850–1864CrossRefGoogle Scholar
  40. 40.
    Miljković M, Bird B, Lenau K, Mazur AI, Diem M (2013) Spectral cytopathology: new aspects of data collection, manipulation and confounding effects. Analyst 138(14):3975–3982CrossRefGoogle Scholar
  41. 41.
    Khanmohammadi M, Ansari MA, Garmarudi AB, Hassanzadeh G, Garoosi G (2007) Cancer diagnosis by discrimination between normal and malignant human blood samples using attenuated total reflectance-Fourier transform infrared spectroscopy. Cancer Investig 25(6):397–404CrossRefGoogle Scholar
  42. 42.
    Hoşafçı G, Klein O, Oremek G, Mäntele W (2007) Clinical chemistry without reagents? An infrared spectroscopic technique for determination of clinically relevant constituents of body fluids. Anal Bioanal Chem 387(5):1815CrossRefGoogle Scholar
  43. 43.
    Hands JR, Dorling KM, Abel P, Ashton KM, Brodbelt A, Davis C et al (2014) Attenuated Total reflection Fourier transform infrared (ATR-FTIR) spectral discrimination of brain tumour severity from serum samples. J Biophotonics 7(3–4):189–199CrossRefGoogle Scholar
  44. 44.
    Gajjar K, Trevisan J, Owens G, Keating PJ, Wood NJ, Stringfellow HF et al (2013) Fourier-transform infrared spectroscopy coupled with a classification machine for the analysis of blood plasma or serum: a novel diagnostic approach for ovarian cancer. Analyst 138(14):3917–3926CrossRefGoogle Scholar
  45. 45.
    Owens GL, Gajjar K, Trevisan J, Fogarty SW, Taylor SE, Da Gama-Rose B et al (2014) Vibrational biospectroscopy coupled with multivariate analysis extracts potentially diagnostic features in blood plasma/serum of ovarian cancer patients. J Biophotonics 7(3–4):200–209CrossRefGoogle Scholar
  46. 46.
    Lewis PD, Lewis KE, Ghosal R, Bayliss S, Lloyd AJ, Wills J et al (2010) Evaluation of FTIR spectroscopy as a diagnostic tool for lung cancer using sputum. BMC Cancer 10(1):640CrossRefGoogle Scholar
  47. 47.
    Khaustova S, Shkurnikov M, Tonevitsky E, Artyushenko V, Tonevitsky A (2010) Noninvasive biochemical monitoring of physiological stress by Fourier transform infrared saliva spectroscopy. Analyst 135(12):3183–3192CrossRefGoogle Scholar
  48. 48.
    Hans KM, Muller S, Sigrist MW (2012) Infrared attenuated total reflection (IR-ATR) spectroscopy for detecting drugs in human saliva. Drug Test Anal 4(6):420–429CrossRefGoogle Scholar
  49. 49.
    Nagase Y, Yoshida S, Kamiyama K (2005) Analysis of human tear fluid by Fourier transform infrared spectroscopy. Biopolymers 79(1):18–27CrossRefGoogle Scholar
  50. 50.
    Nabers A, Ollesch J, Schartner J, Kötting C, Genius J, Hafermann H et al (2016) Amyloid-β-secondary structure distribution in cerebrospinal fluid and blood measured by an Immuno-infrared-sensor: a biomarker candidate for Alzheimer’s disease. Anal Chem 88(5):2755–2762CrossRefGoogle Scholar
  51. 51.
    Poste G (2011) Bring on the biomarkers. Nature 469(7329):156–157CrossRefGoogle Scholar
  52. 52.
    Adhyam M, Gupta AKA (2012) Review on the clinical utility of PSA in cancer prostate. Indian J Surg Oncol 3(2):120–129CrossRefGoogle Scholar
  53. 53.
    Mitchell AL, Gajjar KB, Theophilou G, Martin FL, Martin-Hirsch PL (2014) Vibrational spectroscopy of biofluids for disease screening or diagnosis: translation from the laboratory to a clinical setting. J Biophotonics 7(3–4):153–165CrossRefGoogle Scholar
  54. 54.
    Rhodes A, Jasani B, Balaton AJ, Barnes DM, Miller KD (2000) Frequency of oestrogen and progesterone receptor positivity by immunohistochemical analysis in 7016 breast carcinomas: correlation with patient age, assay sensitivity, threshold value, and mammographic screening. J Clin Pathol 53(9):688–696CrossRefGoogle Scholar
  55. 55.
    Humpel C (2011) Identifying and validating biomarkers for Alzheimer’s disease. Trends Biotechnol 29(1):26–32CrossRefGoogle Scholar
  56. 56.
    Swedko PJ, Clark HD, Paramsothy K, Akbari A (2003) Serum creatinine is an inadequate screening test for renal failure in elderly patients. Arch Intern Med 163(3):356–360CrossRefGoogle Scholar
  57. 57.
    Lovergne L, Bouzy P, Untereiner V, Garnotel R, Baker MJ, Thiefin G et al (2016) Biofluid infrared spectro-diagnostics: pre-analytical considerations for clinical applications. Faraday Discuss 187(0):521–537CrossRefGoogle Scholar
  58. 58.
    Chiappin S, Antonelli G, Gatti R, De Palo EF (2007) Saliva specimen: a new laboratory tool for diagnostic and basic investigation. Clin Chim Acta 383(1–2):30–40CrossRefGoogle Scholar
  59. 59.
    Mitchell BL, Yasui Y, Li CI, Fitzpatrick AL, Lampe PD (2005) Impact of freeze-thaw cycles and storage time on plasma samples used in mass spectrometry based biomarker discovery projects. Cancer Informat 1:98CrossRefGoogle Scholar
  60. 60.
    Gremlich HU, Yan B (2000) Infrared and Raman spectroscopy of biological materials, Practical Spectroscopy Series Volume 24; 2000 Sep 25, Marcel Dekker, Inc. New York, USAGoogle Scholar
  61. 61.
    Hands JR, Abel P, Ashton K, Dawson T, Davis C, Lea RW et al (2013) Investigating the rapid diagnosis of gliomas from serum samples using infrared spectroscopy and cytokine and angiogenesis factors. Anal Bioanal Chem 405(23):7347–7355CrossRefGoogle Scholar
  62. 62.
    Byrne HJ, Baranska M, Puppels GJ, Stone N, Wood B, Gough KM et al (2015) Spectropathology for the next generation: quo vadis? Analyst 140(7):2066–2073CrossRefGoogle Scholar
  63. 63.
    Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (1997) Capillary flow as the cause of ring stains from dried liquid drops. Nature 389(6653):827–829CrossRefGoogle Scholar
  64. 64.
    Filik J, Stone N (2007) Drop coating deposition Raman spectroscopy of protein mixtures. Analyst 132(6):544–550CrossRefGoogle Scholar
  65. 65.
    Bonnier F, Brachet G, Duong R, Sojinrin T, Respaud R, Aubrey N et al (2016) Screening the low molecular weight fraction of human serum using ATR-IR spectroscopy. J Biophotonics 9(10):1085–1097CrossRefGoogle Scholar
  66. 66.
    Martin M, Perez-Guaita D, Andrew DW, Richards JS, Wood BR, Heraud P (2017) The effect of common anticoagulants in detection and quantification of malaria parasitemia in human red blood cells by ATR-FTIR spectroscopy. Analyst.
  67. 67.
    Lam NYL, Rainer TH, Chiu RWK, YMD L (2004) EDTA Is A better anticoagulant than heparin or citrate for delayed blood processing for plasma DNA analysis. Clin Chem 50(1):256–257CrossRefGoogle Scholar
  68. 68.
    Bassan P, Lee J, Sachdeva A, Pissardini J, Dorling KM, Fletcher JS et al (2013) The inherent problem of transflection-mode infrared spectroscopic microscopy and the ramifications for biomedical single point and imaging applications. Analyst 138(1):144–157CrossRefGoogle Scholar
  69. 69.
    Sammon C, Schultz ZD, Kazarian S, Barr H, Goodacre R, Graham D et al (2016) Spectral pathology: general discussion. Faraday Discuss 187(0):155–186CrossRefGoogle Scholar
  70. 70.
    Trevisan J, Angelov PP, Carmichael PL, Scott AD, Martin FL (2012) Extracting biological information with computational analysis of Fourier-transform infrared (FTIR) biospectroscopy datasets: current practices to future perspectives. Analyst 137(14):3202–3215CrossRefGoogle Scholar
  71. 71.
    Krafft C, Steiner G, Beleites C, Salzer R (2009) Disease recognition by infrared and Raman spectroscopy. J Biophotonics 2(1–2):13–28CrossRefGoogle Scholar
  72. 72.
    Butler HJ, Ashton L, Bird B, Cinque G, Curtis K, Dorney J et al (2016) Using Raman spectroscopy to characterize biological materials. Nat Protoc 11(4):664–687CrossRefGoogle Scholar
  73. 73.
    Glassford SE, Byrne B, Kazarian SG (2013) Recent applications of ATR FTIR spectroscopy and imaging to proteins. Biochim Biophys Acta (BBA) Proteins Proteomics 1834(12):2849–2858CrossRefGoogle Scholar
  74. 74.
    Ataka K, Stripp ST, Heberle J (2013) Surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe monolayers of membrane proteins. Biochim Biophys Acta (BBA) Biomembranes 1828(10):2283–2293CrossRefGoogle Scholar
  75. 75.
    JY X, Chen TW, Bao WJ, Wang K, Xia XH (2012) Label-free strategy for in-situ analysis of protein binding interaction based on attenuated Total reflection surface enhanced infrared absorption spectroscopy (ATR-SEIRAS). Langmuir 28(50):17564–17570CrossRefGoogle Scholar
  76. 76.
    Adato R, Altug H (2013) In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas. Nat Commun 4:2154CrossRefGoogle Scholar
  77. 77.
    Kazarian SG, Chan KLA (2013) ATR-FTIR spectroscopic imaging: recent advances and applications to biological systems. Analyst 138(7):1940–1951CrossRefGoogle Scholar
  78. 78.
    Mordechai S, Shufan E, Porat Katz BS, Salman A (2017) Early diagnosis of Alzheimer's disease using infrared spectroscopy of isolated blood samples followed by multivariate analyses. Analyst 142:1276CrossRefGoogle Scholar
  79. 79.
    Walsh MJ, German MJ, Singh M, Pollock HM, Hammiche A, Kyrgiou M et al (2007) IR microspectroscopy: potential applications in cervical cancer screening. Cancer Lett 246(1–2):1–11CrossRefGoogle Scholar
  80. 80.
    Abbasi F, Mirzadeh H, Katbab AA (2002) Bulk and surface modification of silicone rubber for biomedical applications. Polym Int 51(10):882–888CrossRefGoogle Scholar
  81. 81.
    Tsai D-H, Davila-Morris M, DelRio FW, Guha S, Zachariah MR, Hackley VA (2011) Quantitative determination of competitive molecular adsorption on gold nanoparticles using attenuated total reflectance–Fourier transform infrared spectroscopy. Langmuir 27(15):9302–9313CrossRefGoogle Scholar
  82. 82.
    Biazar E, Khorasani M, Daliri M (2011) Cell sheet engineering: solvent effect on nanometric grafting of poly-N-isopropylacrylamide onto polystyrene substrate under ultraviolet radiation. Int J Nanomedicine 6:295–302CrossRefGoogle Scholar
  83. 83.
    Biazar E, Heidari M, Asefnejad A, Montazeri N (2011) The relationship between cellular adhesion and surface roughness in polystyrene modified by microwave plasma radiation. Int J Nanomedicine 6:631–639CrossRefGoogle Scholar
  84. 84.
    Meenach SA, Vogt FG, Anderson KW, Hilt JZ, McGarry RC, Mansour HM (2013) Design, physicochemical characterization, and optimization of organic solution advanced spray-dried inhalable dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine poly(ethylene glycol) (DPPE-PEG) microparticles and nanoparticles for targeted respiratory nanomedicine delivery as dry powder inhalation aerosols. Int J Nanomedicine 8:275–293Google Scholar
  85. 85.
    Mudunkotuwa IA, Minshid AA, Grassian VH (2014) ATR-FTIR spectroscopy as a tool to probe surface adsorption on nanoparticles at the liquid-solid interface in environmentally and biologically relevant media. Analyst 139(5):870–881CrossRefGoogle Scholar
  86. 86.
    Beleites C, Neugebauer U, Bocklitz T, Krafft C, Popp J (2013) Sample size planning for classification models. Anal Chim Acta 760:25–33CrossRefGoogle Scholar
  87. 87.
    Kalmodia S, Parameswaran S, Yang W, Barrow CJ, Krishnakumar S (2015) Attenuated Total reflectance Fourier transform infrared spectroscopy: an analytical technique to understand therapeutic responses at the molecular level. Sci Rep 5:16649CrossRefGoogle Scholar
  88. 88.
    Kelly JG, Angelov PP, Trevisan J, Vlachopoulou A, Paraskevaidis E, Martin-Hirsch PL et al (2010) Robust classification of low-grade cervical cytology following analysis with ATR-FTIR spectroscopy and subsequent application of self-learning classifier eClass. Anal Bioanal Chem 398(5):2191–2201CrossRefGoogle Scholar
  89. 89.
    Lane R, Seo SS (2012) Attenuated Total reflectance Fourier transform infrared spectroscopy method to differentiate between normal and cancerous breast cells. J Nanosci Nanotechnol 12(9):7395–7400CrossRefGoogle Scholar
  90. 90.
    Holton SE, Walsh MJ, Bhargava R (2011) Subcellular localization of early biochemical transformations in cancer-activated fibroblasts using infrared spectroscopic imaging. Analyst 136(14):2953–2958CrossRefGoogle Scholar
  91. 91.
    Purandare NC, Patel II, Trevisan J, Bolger N, Kelehan R, von Bunau G et al (2013) Biospectroscopy insights into the multi-stage process of cervical cancer development: probing for spectral biomarkers in cytology to distinguish grades. Analyst 138(14):3909–3916CrossRefGoogle Scholar
  92. 92.
    BB W, Gong YP, XH W, Chen YY, Chen FF, Jin LT et al (2015) Fourier transform infrared spectroscopy for the distinction of MCF-7 cells treated with different concentrations of 5-fluorouracil. J Transl Med 13(1):108CrossRefGoogle Scholar
  93. 93.
    Halliwell DE, Kyrgiou M, Mitra A, Kalliala I, Paraskevaidis E, Theophilou G et al (2016) Tracking the impact of excisional cervical treatment on the cervix using biospectroscopy. Sci Rep 6:38921CrossRefGoogle Scholar
  94. 94.
    Titus J, Filfili C, Hilliard JK, Ward JA, Unil Perera A (2014) Early detection of cell activation events by means of attenuated total reflection Fourier transform infrared spectroscopy. Appl Phys Lett 104(24):243705CrossRefGoogle Scholar
  95. 95.
    Hands JR, Clemens G, Stables R, Ashton K, Brodbelt A, Davis C et al (2016) Brain tumour differentiation: rapid stratified serum diagnostics via attenuated total reflection Fourier-transform infrared spectroscopy. J Neuro-Oncol 127(3):463–472CrossRefGoogle Scholar
  96. 96.
    Hughes C, Baker MJ (2016) Can mid-infrared biomedical spectroscopy of cells, fluids and tissue aid improvements in cancer survival? A patient paradigm. Analyst 141(2):467–475CrossRefGoogle Scholar
  97. 97.
    Argov S, Ramesh J, Salman A, Sinelnikov I, Goldstein J, Guterman H et al (2002) Diagnostic potential of Fourier-transform infrared microspectroscopy and advanced computational methods in colon cancer patients. J Biomed Opt 7(2):248–254CrossRefGoogle Scholar
  98. 98.
    Ellis DI, Goodacre R (2006) Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy. Analyst 131(8):875–885CrossRefGoogle Scholar
  99. 99.
    Diamandis EP (2010) Cancer biomarkers: can we turn recent failures into success? J Natl Cancer Inst 102:1462CrossRefGoogle Scholar
  100. 100.
    Baker MJ, Hussain SR, Lovergne L, Untereiner V, Hughes C, Lukaszewski RA et al (2016) Developing and understanding biofluid vibrational spectroscopy: a critical review. Chem Soc Rev 45(7):1803–1818CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Maria Paraskevaidi
    • 1
  • Pierre L. Martin-Hirsch
    • 2
  • Francis L. Martin
    • 1
    Email author
  1. 1.School of Pharmacy and Biomedical SciencesUniversity of Central LancashirePrestonUK
  2. 2.Department of Obstetrics and GynaecologyCentral Lancashire Teaching Hospitals NHS Foundation TrustPrestonUK

Personalised recommendations