In Vivo Near-Infrared Fluorescence Imaging

  • Guofeng Liu
  • Jianhui Sheng
  • Yanli ZhaoEmail author


In vivo near-infrared (NIR) fluorescence imaging used for clinical diagnostics and treatment monitoring provides a noninvasive approach for visualizing and peering deeply morphological details of tissues or living subjects with subcellular resolution. In this chapter, we describe the applications of organic dyes, metal complexes, fluorescent biomacromolecules, and nanoparticles (such as polymers, quantum dots (QDs), carbon-based nanomaterials, upconversion nanoparticles (UCNPs), noble metal clusters, and Si-based hybrid nanoparticles) for NIR fluorescence imaging of living subjects.



This work was financially supported by the SingHealth-NTU Research Collaborative Grant (SHS-NTU/009/2016) and the Singapore Academic Research Fund (RG121/16 (S)).


  1. 1.
    Erathodiyil N, Ying JY (2011) Functionalization of inorganic nanoparticles for bioimaging applications. Acc Chem Res 44:925–935CrossRefGoogle Scholar
  2. 2.
    Ueno T, Nagano T (2011) Fluorescent probes for sensing and imaging. Nat Method 8:642–645CrossRefGoogle Scholar
  3. 3.
    Kobayashi H, Ogawa M, Alford R, Choyke PL et al (2010) New strategies for fluorescent probe design in medical diagnostic imaging. Chem Rev 110:2620–2640CrossRefGoogle Scholar
  4. 4.
    Chengzhou Z, Dan D, Yuehe L (2015) Graphene and graphene-like 2D materials for optical biosensing and bioimaging: a review. 2D Mater 2:032004CrossRefGoogle Scholar
  5. 5.
    Bardhan R, Lal S, Joshi A, Halas NJ (2011) Theranostic nanoshells: from probe design to imaging and treatment of cancer. Acc Chem Res 44:936–946CrossRefGoogle Scholar
  6. 6.
    Ding C, Zhu A, Tian Y (2014) Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Acc Chem Res 47:20–30CrossRefGoogle Scholar
  7. 7.
    Hsiao WW-W, Hui YY, Tsai P-C, Chang H-C (2016) Fluorescent nanodiamond: a versatile tool for long-term cell tracking, super-resolution imaging, and nanoscale temperature sensing. Acc Chem Res 49:400–407CrossRefGoogle Scholar
  8. 8.
    Owens EA, Henary M, El Fakhri G, Choi HS (2016) Tissue-specific near-infrared fluorescence imaging. Acc Chem Res 49:1731–1740CrossRefGoogle Scholar
  9. 9.
    Yuan L, Lin W, Zheng K, Zhu S (2013) FRET-based small-molecule fluorescent probes: rational design and bioimaging applications. Acc Chem Res 46:1462–1473CrossRefGoogle Scholar
  10. 10.
    Zhu H, Fan J, Du J, Peng X (2016) Fluorescent probes for sensing and imaging within specific cellular organelles. Acc Chem Res 49:2115–2126CrossRefGoogle Scholar
  11. 11.
    Lin J, Chen X, Huang P (2016) Graphene-based nanomaterials for bioimaging. Adv Drug Deliv Rev 105, Part B:242–254CrossRefGoogle Scholar
  12. 12.
    Pu K-Y, Liu B (2011) Fluorescent conjugated polyelectrolytes for bioimaging. Adv Funct Mater 21:3408–3423CrossRefGoogle Scholar
  13. 13.
    Xing P, Zhao Y (2016) Multifunctional nanoparticles self-assembled from small organic building blocks for biomedicine. Adv Mater 28:7304–7339CrossRefGoogle Scholar
  14. 14.
    Tan G-R, Wang M, Hsu C-Y, Chen N et al (2016) Small upconverting fluorescent nanoparticles for biosensing and bioimaging. Adv Opt Mater 4:984–997CrossRefGoogle Scholar
  15. 15.
    Kushida Y, Nagano T, Hanaoka K (2015) Silicon-substituted xanthene dyes and their applications in bioimaging. Analyst 140:685–695CrossRefGoogle Scholar
  16. 16.
    Li J, Zhu J-J (2013) Quantum dots for fluorescent biosensing and bio-imaging applications. Analyst 138:2506–2515CrossRefGoogle Scholar
  17. 17.
    Hahn MA, Singh AK, Sharma P, Brown SC et al (2011) Nanoparticles as contrast agents for in-vivo bioimaging: current status and future perspectives. Anal Bioanal Chem 399:3–27CrossRefGoogle Scholar
  18. 18.
    Umezawa K, Citterio D, Suzuki K (2014) New trends in near-infrared fluorophores for bioimaging. Anal Sci 30:327–349CrossRefGoogle Scholar
  19. 19.
    Chakraborty K, Veetil AT, Jaffrey SR, Krishnan Y (2016) Nucleic acid–based nanodevices in biological imaging. Annu Rev Biochem 85:349–373CrossRefGoogle Scholar
  20. 20.
    Petryayeva E, Algar WR, Medintz IL (2013) Quantum dots in bioanalysis: a review of applications across various platforms for fluorescence spectroscopy and imaging. Appl Spectrosc 67:215–252CrossRefGoogle Scholar
  21. 21.
    Du X, Li X, Xiong L, Zhang X et al (2016) Mesoporous silica nanoparticles with organo-bridged silsesquioxane framework as innovative platforms for bioimaging and therapeutic agent delivery. Biomaterials 91:90–127CrossRefGoogle Scholar
  22. 22.
    Bae SW, Tan W, Hong J-I (2012) Fluorescent dye-doped silica nanoparticles: new tools for bioapplications. Chem Commun 48:2270–2282CrossRefGoogle Scholar
  23. 23.
    Georgakilas V, Tiwari JN, Kemp KC, Perman JA et al (2016) Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem Rev 116:5464–5519CrossRefGoogle Scholar
  24. 24.
    Louie A (2010) Multimodality imaging probes: design and challenges. Chem Rev 110:3146–3195CrossRefGoogle Scholar
  25. 25.
    Smith BR, Gambhir SS (2017) Nanomaterials for in vivo imaging. Chem Rev 117:901–986CrossRefGoogle Scholar
  26. 26.
    Sun W, Guo S, Hu C, Fan J et al (2016) Recent development of chemosensors based on cyanine platforms. Chem Rev 116:7768–7817CrossRefGoogle Scholar
  27. 27.
    Yang Y, Zhao Q, Feng W, Li F (2013) Luminescent chemodosimeters for bioimaging. Chem Rev 113:192–270CrossRefGoogle Scholar
  28. 28.
    Yao J, Yang M, Duan Y (2014) Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: new insights into biosensing, bioimaging, genomics, diagnostics, and therapy. Chem Rev 114:6130–6178CrossRefGoogle Scholar
  29. 29.
    Wang L-J, Ma F, Tang B, Zhang C-Y (2017) Sensing telomerase: from in vitro detection to in vivo imaging. Chem Sci 8:2495–2502CrossRefGoogle Scholar
  30. 30.
    Amoroso AJ, Pope SJA (2015) Using lanthanide ions in molecular bioimaging. Chem Soc Rev 44:4723–4742CrossRefGoogle Scholar
  31. 31.
    Ashton TD, Jolliffe KA, Pfeffer FM (2015) Luminescent probes for the bioimaging of small anionic species in vitro and in vivo. Chem Soc Rev 44:4547–4595CrossRefGoogle Scholar
  32. 32.
    Chen X, Zhang W (2017) Diamond nanostructures for drug delivery, bioimaging, and biosensing. Chem Soc Rev 46:734–760CrossRefGoogle Scholar
  33. 33.
    Meng H-M, Liu H, Kuai H, Peng R et al (2016) Aptamer-integrated DNA nanostructures for biosensing, bioimaging and cancer therapy. Chem Soc Rev 45:2583–2602CrossRefGoogle Scholar
  34. 34.
    Montalti M, Cantelli A, Battistelli G (2015) Nanodiamonds and silicon quantum dots: ultrastable and biocompatible luminescent nanoprobes for long-term bioimaging. Chem Soc Rev 44:4853–4921CrossRefGoogle Scholar
  35. 35.
    Tang Y, Lee D, Wang J, Li G et al (2015) Development of fluorescent probes based on protection-deprotection of the key functional groups for biological imaging. Chem Soc Rev 44:5003–5015CrossRefGoogle Scholar
  36. 36.
    Wegner KD, Hildebrandt N (2015) Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem Soc Rev 44:4792–4834CrossRefGoogle Scholar
  37. 37.
    Wolfbeis OS (2015) An overview of nanoparticles commonly used in fluorescent bioimaging. Chem Soc Rev 44:4743–4768CrossRefGoogle Scholar
  38. 38.
    Wu P, Yan X-P (2013) Doped quantum dots for chemo/biosensing and bioimaging. Chem Soc Rev 42:5489–5521CrossRefGoogle Scholar
  39. 39.
    Wu X, Zhu W (2015) Stability enhancement of fluorophores for lighting up practical application in bioimaging. Chem Soc Rev 44:4179–4184CrossRefGoogle Scholar
  40. 40.
    Yang Z, Cao J, He Y, Yang JH et al (2014) Macro−/micro-environment-sensitive chemosensing and biological imaging. Chem Soc Rev 43:4563–4601CrossRefGoogle Scholar
  41. 41.
    Yang Z, Sharma A, Qi J, Peng X et al (2016) Super-resolution fluorescent materials: an insight into design and bioimaging applications. Chem Soc Rev 45:4651–4667CrossRefGoogle Scholar
  42. 42.
    Yoo JM, Kang JH, Hong BH (2015) Graphene-based nanomaterials for versatile imaging studies. Chem Soc Rev 44:4835–4852CrossRefGoogle Scholar
  43. 43.
    Zhao Q, Huang C, Li F (2011) Phosphorescent heavy-metal complexes for bioimaging. Chem Soc Rev 40:2508–2524CrossRefGoogle Scholar
  44. 44.
    Zhou J, Liu Z, Li F (2012) Upconversion nanophosphors for small-animal imaging. Chem Soc Rev 41:1323–1349CrossRefGoogle Scholar
  45. 45.
    Zrazhevskiy P, Sena M, Gao X (2010) Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem Soc Rev 39:4326–4354CrossRefGoogle Scholar
  46. 46.
    LeCroy GE, Yang S-T, Yang F, Liu Y et al (2016) Functionalized carbon nanoparticles: syntheses and applications in optical bioimaging and energy conversion. Coord Chem Rev 320–321:66–81CrossRefGoogle Scholar
  47. 47.
    Liu Q, Feng W, Li F (2014) Water-soluble lanthanide upconversion nanophosphors: synthesis and bioimaging applications in vivo. Coord Chem Rev 273–274:100–110CrossRefGoogle Scholar
  48. 48.
    Mukherjee A, Schroeder CM (2015) Flavin-based fluorescent proteins: emerging paradigms in biological imaging. Curr Opin Biotechnol 31:16–23CrossRefGoogle Scholar
  49. 49.
    Escobedo JO, Rusin O, Lim S, Strongin RM (2010) NIR dyes for bioimaging applications. Curr Opin Chem Biol 14:64CrossRefGoogle Scholar
  50. 50.
    Becker JS (2010) Bioimaging of metals in brain tissue from micrometre to nanometre scale by laser ablation inductively coupled plasma mass spectrometry: state of the art and perspectives. Int J Mass Spectrom 289:65–75CrossRefGoogle Scholar
  51. 51.
    Gomes MC, Cunha Â, Trindade T, Tomé JPC (2016) The role of surface functionalization of silica nanoparticles for bioimaging. J Innov Opt Health Sci 09:1630005CrossRefGoogle Scholar
  52. 52.
    Chen S, Wang H, Hong Y, Tang BZ (2016) Fabrication of fluorescent nanoparticles based on AIE luminogens (AIE dots) and their applications in bioimaging. Mater Horiz 3:283–293CrossRefGoogle Scholar
  53. 53.
    Du D, Yang Y, Lin Y (2012) Graphene-based materials for biosensing and bioimaging. MRS Bull 37:1290–1296CrossRefGoogle Scholar
  54. 54.
    Hemmer E, Venkatachalam N, Hyodo H, Hattori A et al (2013) Upconverting and NIR emitting rare earth based nanostructures for NIR-bioimaging. Nanoscale 5:11339–11361CrossRefGoogle Scholar
  55. 55.
    Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA (2010) Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 90:1103–1163CrossRefGoogle Scholar
  56. 56.
    Niu J, Wang X, Lv J, Li Y et al (2014) Luminescent nanoprobes for in-vivo bioimaging. TrAC Trends Anal Chem 58:112–119CrossRefGoogle Scholar
  57. 57.
    Yu M, Li F, Chen Z, Hu H et al (2009) Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors. Anal Chem 81:930–935CrossRefGoogle Scholar
  58. 58.
    So PTC, Dong CY, Masters BR, Berland KM (2000) Two-photon excitation fluorescence microscopy. Annu Rev Biomed Eng 2:399–429CrossRefGoogle Scholar
  59. 59.
    Yi M, Yang S, Peng Z, Liu C et al (2014) Two-photon graphene oxide/aptamer nanosensing conjugate for in vitro or in vivo molecular probing. Anal Chem 86:3548–3554CrossRefGoogle Scholar
  60. 60.
    Nagano T (2010) Development of fluorescent probes for bioimaging applications. Proc Jpn Acad Ser B 86:837–847CrossRefGoogle Scholar
  61. 61.
    Chan J, Dodani SC, Chang CJ (2012) Reaction-based small-molecule fluorescent probes for chemoselective bioimaging. Nat Chem 4:973–984CrossRefGoogle Scholar
  62. 62.
    Barbieri A, Bandini E, Monti F, Praveen VK et al (2016) The rise of near-infrared emitters: organic dyes, porphyrinoids, and transition metal complexes. Top Curr Chem 374:47CrossRefGoogle Scholar
  63. 63.
    Yuan L, Lin W, Zheng K, He L et al (2013) Far-red to near infrared analyte-responsive fluorescent probes based on organic fluorophore platforms for fluorescence imaging. Chem Soc Rev 42:622–661CrossRefGoogle Scholar
  64. 64.
    Isago H (2015) Optical spectra of phthalocyanines and related compounds: a guide for beginners. Springer, Tokyo, pp 107–132Google Scholar
  65. 65.
    Owens EA, Hyun H, Kim SH, Lee JH et al (2013) Highly charged cyanine fluorophores for trafficking scaffold degradation. Biomed Mater 8:014109CrossRefGoogle Scholar
  66. 66.
    Park JH, Royer JE, Chagarov E, Kaufman-Osborn T et al (2013) Atomic imaging of the irreversible sensing mechanism of NO2 adsorption on copper phthalocyanine. J Am Chem Soc 135:14600–14609CrossRefGoogle Scholar
  67. 67.
    Chen X, Pradhan T, Wang F, Kim JS et al (2012) Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives. Chem Rev 112:1910–1956CrossRefGoogle Scholar
  68. 68.
    Katori A, Azuma E, Ishimura H, Kuramochi K et al (2015) Fluorescent dyes with directly connected xanthone and xanthene units. J Org Chem 80:4603–4610CrossRefGoogle Scholar
  69. 69.
    He X, Wu X, Wang K, Shi B et al (2009) Methylene blue-encapsulated phosphonate-terminated silica nanoparticles for simultaneous in vivo imaging and photodynamic therapy. Biomaterials 30:5601–5609CrossRefGoogle Scholar
  70. 70.
    Oushiki D, Kojima H, Terai T, Arita M et al (2010) Development and application of a near-infrared fluorescence probe for oxidative stress based on differential reactivity of linked cyanine dyes. J Am Chem Soc 132:2795–2801CrossRefGoogle Scholar
  71. 71.
    Peng X, Song F, Lu E, Wang Y et al (2005) Heptamethine cyanine dyes with a large stokes shift and strong fluorescence: a paradigm for excited-state intramolecular charge transfer. J Am Chem Soc 127:4170–4171CrossRefGoogle Scholar
  72. 72.
    Tasior M, O’Shea DF (2010) BF2-chelated tetraarylazadipyrromethenes as NIR fluorochromes. Bioconjug Chem 21:1130–1133CrossRefGoogle Scholar
  73. 73.
    Pansare VJ, Hejazi S, Faenza WJ, Prud’homme RK (2012) Review of long-wavelength optical and NIR imaging materials: contrast agents, fluorophores, and multifunctional nano carriers. Chem Mater 24:812–827CrossRefGoogle Scholar
  74. 74.
    Choi HS, Nasr K, Alyabyev S, Feith D et al (2011) Synthesis and in vivo fate of zwitterionic near-infrared fluorophores. Angew Chem Int Ed 50:6258–6263CrossRefGoogle Scholar
  75. 75.
    Rong P, Huang P, Liu Z, Lin J et al (2015) Protein-based photothermal theranostics for imaging-guided cancer therapy. Nanoscale 7:16330–16336CrossRefGoogle Scholar
  76. 76.
    Owens EA, Hyun H, Tawney JG, Choi HS et al (2015) Correlating molecular character of NIR imaging agents with tissue-specific uptake. J Med Chem 58:4348–4356CrossRefGoogle Scholar
  77. 77.
    Zhang K, Zhang J, Xi Z, Li L-Y et al (2017) A new H2S-specific near-infrared fluorescence-enhanced probe that can visualize the H2S level in colorectal cancer cells in mice. Chem Sci 8:2776–2781CrossRefGoogle Scholar
  78. 78.
    Hyun H, Wada H, Bao K, Gravier J et al (2014) Phosphonated near-infrared fluorophores for biomedical imaging of bone. Angew Chem Int Ed 53:10668–10672CrossRefGoogle Scholar
  79. 79.
    Hyun H, Owens EA, Wada H, Levitz A et al (2015) Cartilage-specific near-infrared fluorophores for biomedical imaging. Angew Chem Int Ed 54:8648–8652CrossRefGoogle Scholar
  80. 80.
    Choi HS, Gibbs SL, Lee JH, Kim SH et al (2013) Targeted zwitterionic near-infrared fluorophores for improved optical imaging. Nat Biotechnol 31:148–153CrossRefGoogle Scholar
  81. 81.
    Hyun H, Park MH, Owens EA, Wada H et al (2015) Structure-inherent targeting of near-infrared fluorophores for parathyroid and thyroid gland imaging. Nat Med 21:192–197CrossRefGoogle Scholar
  82. 82.
    Fischer GM, Jungst C, Isomaki-Krondahl M, Gauss D et al (2010) Asymmetric PPCys: strongly fluorescing NIR labels. Chem Commun 46:5289–5291CrossRefGoogle Scholar
  83. 83.
    Anees P, Joseph J, Sreejith S, Menon NV et al (2016) Real time monitoring of aminothiol level in blood using a near-infrared dye assisted deep tissue fluorescence and photoacoustic bimodal imaging. Chem Sci 7:4110–4116CrossRefGoogle Scholar
  84. 84.
    Avirah RR, Jayaram DT, Adarsh N, Ramaiah D (2012) Squaraine dyes in PDT: from basic design to in vivo demonstration. Org Biomol Chem 10:911–920CrossRefGoogle Scholar
  85. 85.
    Hu L, Yan Z, Xu H (2013) Advances in synthesis and application of near-infrared absorbing squaraine dyes. RSC Adv 3:7667–7676CrossRefGoogle Scholar
  86. 86.
    Beverina L, Salice P (2010) Squaraine compounds: tailored design and synthesis towards a variety of material science applications. Eur J Org Chem 2010:1207–1225CrossRefGoogle Scholar
  87. 87.
    Anees P, Sreejith S, Ajayaghosh A (2014) Self-assembled near-infrared dye nanoparticles as a selective protein sensor by activation of a dormant fluorophore. J Am Chem Soc 136:13233–13239CrossRefGoogle Scholar
  88. 88.
    Baumes JM, Gassensmith JJ, Giblin J, Lee J-J et al (2010) Storable, thermally activated, near-infrared chemiluminescent dyes and dye-stained microparticles for optical imaging. Nat Chem 2:1025–1030CrossRefGoogle Scholar
  89. 89.
    A. Poirel, A. De Nicola and R. Ziessel, Oligothienyl-BODIPYs: red and near-infrared emitters, Org Lett, 2012, 14: 5696–5699CrossRefGoogle Scholar
  90. 90.
    Ni Y, Wu J (2014) Far-red and near infrared BODIPY dyes: synthesis and applications for fluorescent pH probes and bio-imaging. Org Biomol Chem 12:3774–3791CrossRefGoogle Scholar
  91. 91.
    Zhang X, Yu H, Xiao Y (2012) Replacing phenyl ring with thiophene: an approach to longer wavelength aza-dipyrromethene boron difluoride (Aza-BODIPY) dyes. J Org Chem 77:669–673CrossRefGoogle Scholar
  92. 92.
    Lu H, Mack J, Yang Y, Shen Z (2014) Structural modification strategies for the rational design of red/NIR region BODIPYs. Chem Soc Rev 43:4778–4823CrossRefGoogle Scholar
  93. 93.
    Loudet A, Burgess K (2007) BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem Rev 107:4891–4932CrossRefGoogle Scholar
  94. 94.
    Ulrich G, Ziessel R, Harriman A (2008) The chemistry of fluorescent bodipy dyes: versatility unsurpassed. Angew Chem Int Ed 47:1184–1201CrossRefGoogle Scholar
  95. 95.
    Tasior M, Murtagh J, Frimannsson DO, McDonnell SO et al (2010) Water-solubilised BF2-chelated tetraarylazadipyrromethenes. Org Biomol Chem 8:522–525CrossRefGoogle Scholar
  96. 96.
    Jiang N, Fan J, Liu T, Cao J et al (2013) A near-infrared dye based on BODIPY for tracking morphology changes in mitochondria. Chem Commun 49:10620–10622CrossRefGoogle Scholar
  97. 97.
    Wu H, Krishnakumar S, Yu J, Liang D et al (2014) Highly selective and sensitive near-infrared-fluorescent probes for the detection of cellular hydrogen sulfide and the imaging of H2S in mice. Chem Asian J 9:3604–3611CrossRefGoogle Scholar
  98. 98.
    Tian J, Zhou J, Shen Z, Ding L et al (2015) A pH-activatable and aniline-substituted photosensitizer for near-infrared cancer theranostics. Chem Sci 6:5969–5977CrossRefGoogle Scholar
  99. 99.
    McQuade LE, Ma J, Lowe G, Ghatpande A et al (2010) Visualization of nitric oxide production in the mouse main olfactory bulb by a cell-trappable copper(II) fluorescent probe. Proc Natl Acad Sci 107:8525–8530CrossRefGoogle Scholar
  100. 100.
    Koide Y, Urano Y, Hanaoka K, Piao W et al (2012) Development of NIR fluorescent dyes based on Si–rhodamine for in vivo imaging. J Am Chem Soc 134:5029–5031CrossRefGoogle Scholar
  101. 101.
    Yuan L, Lin W, Yang Y, Chen H (2012) A unique class of near-infrared functional fluorescent dyes with carboxylic-acid-modulated fluorescence ON/OFF switching: rational design, synthesis, optical properties, theoretical calculations, and applications for fluorescence imaging in living animals. J Am Chem Soc 134:1200–1211CrossRefGoogle Scholar
  102. 102.
    Koide Y, Urano Y, Hanaoka K, Terai T et al (2011) Development of an Si-rhodamine-based far-red to near-infrared fluorescence probe selective for hypochlorous acid and its applications for biological imaging. J Am Chem Soc 133:5680–5682CrossRefGoogle Scholar
  103. 103.
    Bhupathiraju NVSDK, Rizvi W, Batteas JD, Drain CM (2016) Fluorinated porphyrinoids as efficient platforms for new photonic materials, sensors, and therapeutics. Org Biomol Chem 14:389–408CrossRefGoogle Scholar
  104. 104.
    Babu SS, Bonifazi D (2014) Self-organization of polar porphyrinoids. ChemPlusChem 79:895–906CrossRefGoogle Scholar
  105. 105.
    Sommer JR, Shelton AH, Parthasarathy A, Ghiviriga I et al (2011) Photophysical properties of near-infrared phosphorescent π-extended platinum porphyrins. Chem Mater 23:5296–5304CrossRefGoogle Scholar
  106. 106.
    Lovell JF, Jin CS, Huynh E, Jin H et al (2011) Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat Mater 10:324–332CrossRefGoogle Scholar
  107. 107.
    Kim J, Tung C-H, Choi Y (2014) Smart dual-functional warhead for folate receptor-specific activatable imaging and photodynamic therapy. Chem Commun 50:10600–10603CrossRefGoogle Scholar
  108. 108.
    Lee H, Kim J, Kim H, Kim Y et al (2014) A folate receptor-specific activatable probe for near-infrared fluorescence imaging of ovarian cancer. Chem Commun 50:7507–7510CrossRefGoogle Scholar
  109. 109.
    Yang Q, Ma Z, Wang H, Zhou B et al (2017) Rational design of molecular fluorophores for biological imaging in the NIR-II window. Adv Mater 29:1605497CrossRefGoogle Scholar
  110. 110.
    Divya KP, Sreejith S, Ashokkumar P, Yuzhan K et al (2014) A ratiometric fluorescent molecular probe with enhanced two-photon response upon Zn2+ binding for in vitro and in vivo bioimaging. Chem Sci 5:3469–3474CrossRefGoogle Scholar
  111. 111.
    Tian J, Ding L, Xu H-J, Shen Z et al (2013) Cell-specific and pH-activatable rubyrin-loaded nanoparticles for highly selective near-infrared photodynamic therapy against cancer. J Am Chem Soc 135:18850–18858CrossRefGoogle Scholar
  112. 112.
    Sun W, Fan J, Hu C, Cao J et al (2013) A two-photon fluorescent probe with near-infrared emission for hydrogen sulfide imaging in biosystems. Chem Commun 49:3890–3892CrossRefGoogle Scholar
  113. 113.
    Chen Y, Guan R, Zhang C, Huang J et al (2016) Two-photon luminescent metal complexes for bioimaging and cancer phototherapy. Coord Chem Rev 310:16–40CrossRefGoogle Scholar
  114. 114.
    Zhang KY, Liu S, Zhao Q, Li F et al (2015) In: Lo KK-W (ed) Luminescent and photoactive transition metal complexes as biomolecular probes and cellular reagents. Springer, Berlin/Heidelberg, pp 131–180Google Scholar
  115. 115.
    Jing J, Chen J-J, Hai Y, Zhan J et al (2012) Rational design of ZnSalen as a single and two photon activatable fluorophore in living cells. Chem Sci 3:3315–3320CrossRefGoogle Scholar
  116. 116.
    Xie D, Jing J, Cai Y-B, Tang J et al (2014) Construction of an orthogonal ZnSalen/Salophen library as a colour palette for one- and two-photon live cell imaging. Chem Sci 5:2318–2327CrossRefGoogle Scholar
  117. 117.
    Shu X, Royant A, Lin MZ, Aguilera TA et al (2009) Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome. Science 324:804–807CrossRefGoogle Scholar
  118. 118.
    Allison RR (2016) Fluorescence guided resection (FGR): a primer for oncology. Photodiagn Photodyn Ther 13:73–80CrossRefGoogle Scholar
  119. 119.
    Lin MZ (2011) Beyond the rainbow: new fluorescent proteins brighten the infrared scene. Nat Method 8:726–728CrossRefGoogle Scholar
  120. 120.
    Lecoq J, Schnitzer MJ (2011) An infrared fluorescent protein for deeper imaging. Nat Biotechnol 29:715–716CrossRefGoogle Scholar
  121. 121.
    Shcherbo D, Shemiakina II, Ryabova AV, Luker KE et al (2010) Near-infrared fluorescent proteins. Nat Method 7:827–829CrossRefGoogle Scholar
  122. 122.
    Filonov GS, Piatkevich KD, Ting L-M, Zhang J et al (2011) Bright and stable near-infrared fluorescent protein for in vivo imaging. Nat Biotechnol 29:757–761CrossRefGoogle Scholar
  123. 123.
    Gong H, Kovar J, Little G, Chen H et al (2010) In vivo imaging of xenograft tumors using an epidermal growth factor receptor-specific affibody molecule labeled with a near-infrared fluorophore. Neoplasia (New York) 12:139–149CrossRefGoogle Scholar
  124. 124.
    He J, Wang Y, Missinato MA, Onuoha E et al (2016) A genetically targetable near-infrared photosensitizer. Nat Method 13:263–268CrossRefGoogle Scholar
  125. 125.
    Wang Y, Ballou B, Schmidt BF, Andreko S et al (2017) Affibody-targeted fluorogen activating protein for in vivo tumor imaging. Chem Commun 53:2001–2004CrossRefGoogle Scholar
  126. 126.
    Yang Y, Xiang K, Yang Y-X, Wang Y-W et al (2013) An individually coated near-infrared fluorescent protein as a safe and robust nanoprobe for in vivo imaging. Nanoscale 5:10345–10352CrossRefGoogle Scholar
  127. 127.
    Hong H, Goel S, Zhang Y, Cai W (2011) Molecular imaging with nucleic acid aptamers. Curr Med Chem 18:4195–4205CrossRefGoogle Scholar
  128. 128.
    Mallikaratchy PR, Ruggiero A, Gardner JR, Kuryavyi V et al (2011) A multivalent DNA aptamer specific for the B-cell receptor on human lymphoma and leukemia. Nucleic Acids Res 39:2458–2469CrossRefGoogle Scholar
  129. 129.
    Shi H, He X, Wang K, Wu X et al (2011) Activatable aptamer probe for contrast-enhanced in vivo cancer imaging based on cell membrane protein-triggered conformation alteration. Proc Natl Acad Sci 108:3900–3905CrossRefGoogle Scholar
  130. 130.
    Gong P, Shi B, Zheng M, Wang B et al (2012) PEI protected aptamer molecular probes for contrast-enhanced in vivo cancer imaging. Biomaterials 33:7810–7817CrossRefGoogle Scholar
  131. 131.
    Choi HMT, Beck VA, Pierce NA (2014) Next-generation in situ hybridization chain reaction: higher gain, lower cost, greater durability. ACS Nano 8:4284–4294CrossRefGoogle Scholar
  132. 132.
    Choi HMT, Chang JY, Trinh LA, Padilla JE et al (2010) Programmable in situ amplification for multiplexed imaging of mRNA expression. Nat Biotechnol 28:1208–1212CrossRefGoogle Scholar
  133. 133.
    Hu S-H, Gao X (2010) Nanocomposites with spatially separated functionalities for combined imaging and magnetolytic therapy. J Am Chem Soc 132:7234–7237CrossRefGoogle Scholar
  134. 134.
    Zhang X, Wang S, Xu L, Feng L et al (2012) Biocompatible polydopamine fluorescent organic nanoparticles: facile preparation and cell imaging. Nanoscale 4:5581–5584CrossRefGoogle Scholar
  135. 135.
    Wang X-d, Meier RJ, Wolfbeis OS (2012) A fluorophore-doped polymer nanomaterial for referenced imaging of pH and temperature with sub-micrometer resolution. Adv Funct Mater 22:4202–4207CrossRefGoogle Scholar
  136. 136.
    Schreml S, Meier RJ, Kirschbaum M, Kong SC et al (2014) Luminescent dual sensors reveal extracellular pH-gradients and hypoxia on chronic wounds that disrupt epidermal repair. Theranostics 4:721–735CrossRefGoogle Scholar
  137. 137.
    Li Y, Yang HY, Lee DS (2016) Polymer-based and pH-sensitive nanobiosensors for imaging and therapy of acidic pathological areas. Pharm Res 33:2358–2372CrossRefGoogle Scholar
  138. 138.
    Tuncel D, Demir HV (2010) Conjugated polymer nanoparticles. Nanoscale 2:484–494CrossRefGoogle Scholar
  139. 139.
    Xu H, Wang L, Fan C (2012) Functional nanoparticles for bioanalysis. Nanomedicine, and bioelectronic devices, vol 1. ACS symposium series, vol 1112, Chapter 4. American Chemical Society, Washington, DC, pp 81–117Google Scholar
  140. 140.
    Wu C, Szymanski C, Cain Z, McNeill J (2007) Conjugated polymer dots for multiphoton fluorescence imaging. J Am Chem Soc 129:12904–12905CrossRefGoogle Scholar
  141. 141.
    Kim S, Lim C-K, Na J, Lee Y-D et al (2010) Conjugated polymer nanoparticles for biomedical in vivo imaging. Chem Commun 46:1617–1619CrossRefGoogle Scholar
  142. 142.
    Li K, Liu Y, Pu K-Y, Feng S-S et al (2011) Polyhedral oligomeric silsesquioxanes-containing conjugated polymer loaded PLGA nanoparticles with trastuzumab (herceptin) functionalization for HER2-positive cancer cell detection. Adv Funct Mater 21:287–294CrossRefGoogle Scholar
  143. 143.
    Shuhendler AJ, Pu K, Cui L, Uetrecht JP et al (2014) Real-time imaging of oxidative and nitrosative stress in the liver of live animals for drug-toxicity testing. Nat Biotechnol 32:373–380CrossRefGoogle Scholar
  144. 144.
    Klingstedt T, Nilsson KPR (2011) Conjugated polymers for enhanced bioimaging. Biochim Biophys Acta Gen Subj 1810:286–296CrossRefGoogle Scholar
  145. 145.
    Jeong K, Park S, Lee Y-D, Lim C-K et al (2013) Conjugated polymer/photochromophore binary nanococktails: bistable photoswitching of near-infrared fluorescence for in vivo imaging. Adv Mater 25:5574–5580CrossRefGoogle Scholar
  146. 146.
    Ding D, Liu J, Feng G, Li K et al (2013) Bright far-red/near-infrared conjugated polymer nanoparticles for in vivo bioimaging. Small 9:3093–3102CrossRefGoogle Scholar
  147. 147.
    Greenham NC, Moratti SC, Bradley DDC, Friend RH et al (1993) Efficient light-emitting diodes based on polymers with high electron affinities. Nature 365:628–630CrossRefGoogle Scholar
  148. 148.
    Lyu Y, Pu K (2017) Recent advances of activatable molecular probes based on semiconducting polymer nanoparticles in sensing and imaging. Adv Sci 4:1600481CrossRefGoogle Scholar
  149. 149.
    Zhu H, Fang Y, Zhen X, Wei N et al (2016) Multilayered semiconducting polymer nanoparticles with enhanced NIR fluorescence for molecular imaging in cells, zebrafish and mice. Chem Sci 7:5118–5125CrossRefGoogle Scholar
  150. 150.
    Jin Y, Ye F, Zeigler M, Wu C et al (2011) Near-infrared fluorescent dye-doped semiconducting polymer dots. ACS Nano 5:1468–1475CrossRefGoogle Scholar
  151. 151.
    Pu K, Shuhendler AJ, Rao J (2013) Semiconducting polymer nanoprobe for in vivo imaging of reactive oxygen and nitrogen species. Angew Chem Int Ed 52:10325–10329CrossRefGoogle Scholar
  152. 152.
    Wu C, Hansen SJ, Hou Q, Yu J et al (2011) Design of highly emissive polymer dot bioconjugates for in vivo tumor targeting. Angew Chem Int Ed 50:3430–3434CrossRefGoogle Scholar
  153. 153.
    Pu K, Chattopadhyay N, Rao J (2016) Recent advances of semiconducting polymer nanoparticles in in vivo molecular imaging. J Control Release 240:312–322CrossRefGoogle Scholar
  154. 154.
    Liu H-Y, Wu P-J, Kuo S-Y, Chen C-P et al (2015) Quinoxaline-based polymer dots with ultrabright red to near-infrared fluorescence for in vivo biological imaging. J Am Chem Soc 137:10420–10429CrossRefGoogle Scholar
  155. 155.
    Pu K, Shuhendler AJ, Valta MP, Cui L et al (2014) Phosphorylcholine-coated semiconducting polymer nanoparticles as rapid and efficient labeling agents for in vivo cell tracking. Adv Healthc Mater 3:1292–1298CrossRefGoogle Scholar
  156. 156.
    Ding D, Li K, Zhu Z, Pu K-Y et al (2011) Conjugated polyelectrolyte-cisplatin complex nanoparticles for simultaneous in vivo imaging and drug tracking. Nanoscale 3:1997–2002CrossRefGoogle Scholar
  157. 157.
    Fu L, Sun C, Yan L (2015) Galactose targeted pH-responsive copolymer conjugated with near infrared fluorescence probe for imaging of intelligent drug delivery. ACS Appl Mater Interfaces 7:2104–2115CrossRefGoogle Scholar
  158. 158.
    Koo H, Lee H, Lee S, Min KH et al (2010) In vivo tumor diagnosis and photodynamic therapy via tumoral pH-responsive polymeric micelles. Chem Commun 46:5668–5670CrossRefGoogle Scholar
  159. 159.
    Shen S, Wang Q (2013) Rational tuning the optical properties of metal sulfide nanocrystals and their applications. Chem Mater 25:1166–1178CrossRefGoogle Scholar
  160. 160.
    Jing L, Kershaw SV, Li Y, Huang X et al (2016) Aqueous based semiconductor nanocrystals. Chem Rev 116:10623–10730CrossRefGoogle Scholar
  161. 161.
    Lim SJ, Ma L, Schleife A, Smith AM (2016) Quantum dot surface engineering: toward inert fluorophores with compact size and bright, stable emission. Coord Chem Rev 320–321:216–237CrossRefGoogle Scholar
  162. 162.
    He Y, Zhong Y, Su Y, Lu Y et al (2011) Water-dispersed near-infrared-emitting quantum dots of ultrasmall sizes for in vitro and in vivo imaging. Angew Chem Int Ed 50:5695–5698CrossRefGoogle Scholar
  163. 163.
    Gu Y-P, Cui R, Zhang Z-L, Xie Z-X et al (2012) Ultrasmall near-infrared Ag2Se quantum dots with tunable fluorescence for in vivo imaging. J Am Chem Soc 134:79–82CrossRefGoogle Scholar
  164. 164.
    Wang J, Lu Y, Peng F, Zhong Y et al (2013) Photostable water-dispersible NIR-emitting CdTe/CdS/ZnS core–shell–shell quantum dots for high-resolution tumor targeting. Biomaterials 34:9509–9518CrossRefGoogle Scholar
  165. 165.
    Wang Y, Hu R, Lin G, Law W-C et al (2013) Optimizing the aqueous phase synthesis of CdTe quantum dots using mixed-ligands system and their applications for imaging of live cancer cells and tumors in vivo. RSC Adv 3:8899–8908CrossRefGoogle Scholar
  166. 166.
    Chen L-N, Wang J, Li W-T, Han H-Y (2012) Aqueous one-pot synthesis of bright and ultrasmall CdTe/CdS near-infrared-emitting quantum dots and their application for tumor targeting in vivo. Chem Commun 48:4971–4973CrossRefGoogle Scholar
  167. 167.
    Kikushima K, Kita S, Higuchi H (2013) A non-invasive imaging for the in vivo tracking of high-speed vesicle transport in mouse neutrophils. Sci Rep 3:1913CrossRefGoogle Scholar
  168. 168.
    Chen G, Tian F, Zhang Y, Zhang Y et al (2014) Tracking of transplanted human mesenchymal stem cells in living mice using near-infrared Ag2S quantum dots. Adv Funct Mater 24:2481–2488CrossRefGoogle Scholar
  169. 169.
    Hasegawa M, Tsukasaki Y, Ohyanagi T, Jin T (2013) Bioluminescence resonance energy transfer coupled near-infrared quantum dots using GST-tagged luciferase for in vivo imaging. Chem Commun 49:228–230CrossRefGoogle Scholar
  170. 170.
    Yang K, Zhang F-J, Tang H, Zhao C et al (2011) In-vivo imaging of oral squamous cell carcinoma by EGFR monoclonal antibody conjugated near-infrared quantum dots in mice. Int J Nanomedicine 6:1739–1745CrossRefGoogle Scholar
  171. 171.
    Yong K-T, Roy I, Law W-C, Hu R (2010) Synthesis of cRGD-peptide conjugated near-infrared CdTe/ZnSe core-shell quantum dots for in vivo cancer targeting and imaging. Chem Commun 46:7136–7138CrossRefGoogle Scholar
  172. 172.
    Li C, Ji Y, Wang C, Liang S et al (2014) BRCAA1 antibody- and Her2 antibody-conjugated amphiphilic polymer engineered CdSe/ZnS quantum dots for targeted imaging of gastric cancer. Nanoscale Res Lett 9:244CrossRefGoogle Scholar
  173. 173.
    Yuan Y, Zhang J, An L, Cao Q et al (2014) Oligomeric nanoparticles functionalized with NIR-emitting CdTe/CdS QDs and folate for tumor-targeted imaging. Biomaterials 35:7881–7886CrossRefGoogle Scholar
  174. 174.
    Liu L, Yong K-T, Roy I, Law W-C et al (2012) Bioconjugated pluronic triblock-copolymer micelle-encapsulated quantum dots for targeted imaging of cancer: in vitro and in vivo studies. Theranostics 2:705–713CrossRefGoogle Scholar
  175. 175.
    Liu L-w, Hu S-y, Pan Y, Zhang J-q et al (2014) Optimizing the synthesis of CdS/ZnS core/shell semiconductor nanocrystals for bioimaging applications. Beilstein J Nanotechnol 5:919–926CrossRefGoogle Scholar
  176. 176.
    Ding H, Yong K-T, Law W-C, Roy I et al (2011) Non-invasive tumor detection in small animals using novel functional Pluronic nanomicelles conjugated with anti-mesothelin antibody. Nanoscale 3:1813–1822CrossRefGoogle Scholar
  177. 177.
    Guo W, Sun X, Jacobson O, Yan X et al (2015) Intrinsically radioactive [64Cu]CuInS/ZnS quantum dots for PET and optical imaging: improved radiochemical stability and controllable cerenkov luminescence. ACS Nano 9:488–495CrossRefGoogle Scholar
  178. 178.
    Andrasfalvy BK, Galinanes GL, Huber D, Barbic M et al (2014) Quantum dot-based multiphoton fluorescent pipettes for targeted neuronal electrophysiology. Nat Method 11:1237–1241CrossRefGoogle Scholar
  179. 179.
    Xu X, Ray R, Gu Y, Ploehn HJ et al (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126:12736–12737CrossRefGoogle Scholar
  180. 180.
    Yang S-T, Cao L, Luo PG, Lu F et al (2009) Carbon dots for optical imaging in vivo. J Am Chem Soc 131:11308–11309CrossRefGoogle Scholar
  181. 181.
    Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed 49:6726–6744CrossRefGoogle Scholar
  182. 182.
    Liu J-H, Anilkumar P, Cao L, Wang X et al (2010) Cytotoxicity evaluations of fluorescent carbon nanoparticles. Nano Life 01:153–161CrossRefGoogle Scholar
  183. 183.
    Luo PG, Sahu S, Yang S-T, Sonkar SK et al (2013) Carbon “quantum” dots for optical bioimaging. J Mater Chem B 1:2116–2127CrossRefGoogle Scholar
  184. 184.
    Sharker SM, Kim SM, Lee JE, Jeong JH et al (2015) In situ synthesis of luminescent carbon nanoparticles toward target bioimaging. Nanoscale 7:5468–5475CrossRefGoogle Scholar
  185. 185.
    Yuan F, Li S, Fan Z, Meng X et al (2016) Shining carbon dots: synthesis and biomedical and optoelectronic applications. Nano Today 11:565–586CrossRefGoogle Scholar
  186. 186.
    Li H, Kang Z, Liu Y, Lee S-T (2012) Carbon nanodots: synthesis, properties and applications. J Mater Chem 22:24230–24253CrossRefGoogle Scholar
  187. 187.
    Wang Y, Hu A (2014) Carbon quantum dots: synthesis, properties and applications. J Mater Chem C 2:6921–6939CrossRefGoogle Scholar
  188. 188.
    Roy P, Chen P-C, Periasamy AP, Chen Y-N et al (2015) Photoluminescent carbon nanodots: synthesis, physicochemical properties and analytical applications. Mater Today 18:447–458CrossRefGoogle Scholar
  189. 189.
    Liu X, Pang J, Xu F, Zhang X (2016) Simple approach to synthesize amino-functionalized carbon dots by carbonization of chitosan. Sci Rep 6:31100CrossRefGoogle Scholar
  190. 190.
    Zhang J, Yu S-H (2016) Carbon dots: large-scale synthesis, sensing and bioimaging. Mater Today 19:382–393CrossRefGoogle Scholar
  191. 191.
    Nguyen V, Si J, Yan L, Hou X (2015) Electron–hole recombination dynamics in carbon nanodots. Carbon 95:659–663CrossRefGoogle Scholar
  192. 192.
    Wang F, Pang S, Wang L, Li Q et al (2010) One-step synthesis of highly luminescent carbon dots in noncoordinating solvents. Chem Mater 22:4528–4530CrossRefGoogle Scholar
  193. 193.
    Li X, Wang H, Shimizu Y, Pyatenko A et al (2011) Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents. Chem Commun 47:932–934CrossRefGoogle Scholar
  194. 194.
    Li H, He X, Liu Y, Huang H et al (2011) One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon 49:605–609CrossRefGoogle Scholar
  195. 195.
    Huang X, Zhang F, Zhu L, Choi KY et al (2013) Effect of injection routes on the biodistribution, clearance, and tumor uptake of carbon dots. ACS Nano 7:5684–5693CrossRefGoogle Scholar
  196. 196.
    Huang P, Lin J, Wang X, Wang Z et al (2012) Light-triggered theranostics based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy. Adv Mater 24:5104–5110CrossRefGoogle Scholar
  197. 197.
    Kong B, Zhu A, Ding C, Zhao X et al (2012) Carbon dot-based inorganic–organic nanosystem for two-photon imaging and biosensing of pH variation in living cells and tissues. Adv Mater 24:5844–5848CrossRefGoogle Scholar
  198. 198.
    Wang X, Liu Z (2012) Carbon nanotubes in biology and medicine: an overview. Chin Sci Bull 57:167–180CrossRefGoogle Scholar
  199. 199.
    O’Connell MJ, Bachilo SM, Huffman CB, Moore VC et al (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297:593–596CrossRefGoogle Scholar
  200. 200.
    Welsher K, Liu Z, Sherlock SP, Robinson JT et al (2009) A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat Nanotechnol 4:773–780CrossRefGoogle Scholar
  201. 201.
    Hong G, Tabakman SM, Welsher K, Wang H et al (2010) Metal-enhanced fluorescence of carbon nanotubes. J Am Chem Soc 132:15920–15923CrossRefGoogle Scholar
  202. 202.
    Joselevich E, Dai H, Liu J, Hata K et al (2008) In: Jorio A, Dresselhaus G, Dresselhaus MS (eds) Carbon nanotubes: advanced topics in the synthesis, structure, properties and applications. Springer, Berlin/Heidelberg, pp 101–165Google Scholar
  203. 203.
    Hong H, Gao T, Cai W (2009) Molecular imaging with single-walled carbon nanotubes. Nano Today 4:252–261CrossRefGoogle Scholar
  204. 204.
    Liu Z, Tabakman S, Welsher K, Dai H (2009) Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res 2:85–120CrossRefGoogle Scholar
  205. 205.
    Wu H-C, Chang X, Liu L, Zhao F et al (2010) Chemistry of carbon nanotubes in biomedical applications. J Mater Chem 20:1036–1052CrossRefGoogle Scholar
  206. 206.
    Huang H, Zou M, Xu X, Liu F et al (2011) Near-infrared fluorescence spectroscopy of single-walled carbon nanotubes and its applications. TrAC Trends Anal Chem 30:1109–1119CrossRefGoogle Scholar
  207. 207.
    Liu Z, Yang K, Lee S-T (2011) Single-walled carbon nanotubes in biomedical imaging. J Mater Chem 21:586–598CrossRefGoogle Scholar
  208. 208.
    Gong H, Peng R, Liu Z (2013) Carbon nanotubes for biomedical imaging: the recent advances. Adv Drug Deliv Rev 65:1951–1963CrossRefGoogle Scholar
  209. 209.
    Mu B, Zhang J, McNicholas TP, Reuel NF et al (2014) Recent advances in molecular recognition based on nanoengineered platforms. Acc Chem Res 47:979–988CrossRefGoogle Scholar
  210. 210.
    Welsher K, Sherlock SP, Dai H (2011) Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proc Natl Acad Sci 108:8943–8948CrossRefGoogle Scholar
  211. 211.
    Diao S, Hong G, Robinson JT, Jiao L et al (2012) Chirality enriched (12,1) and (11,3) single-walled carbon nanotubes for biological imaging. J Am Chem Soc 134:16971–16974CrossRefGoogle Scholar
  212. 212.
    Robinson JT, Hong G, Liang Y, Zhang B et al (2012) In vivo fluorescence imaging in the second near-infrared window with long circulating carbon nanotubes capable of ultrahigh tumor uptake. J Am Chem Soc 134:10664–10669CrossRefGoogle Scholar
  213. 213.
    Yi H, Ghosh D, Ham M-H, Qi J et al (2012) M13 phage-functionalized single-walled carbon nanotubes as nanoprobes for second near-infrared window fluorescence imaging of targeted tumors. Nano Lett 12:1176–1183CrossRefGoogle Scholar
  214. 214.
    Shen H, Zhang L, Liu M, Zhang Z (2012) Biomedical applications of graphene. Theranostics 2:283–294CrossRefGoogle Scholar
  215. 215.
    Shen J, Zhu Y, Yang X, Li C (2012) Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun 48:3686–3699CrossRefGoogle Scholar
  216. 216.
    Gollavelli G, Ling Y-C (2012) Multi-functional graphene as an in vitro and in vivo imaging probe. Biomaterials 33:2532–2545CrossRefGoogle Scholar
  217. 217.
    Yang K, Feng L, Shi X, Liu Z (2013) Nano-graphene in biomedicine: theranostic applications. Chem Soc Rev 42:530–547CrossRefGoogle Scholar
  218. 218.
    Li L, Wu G, Yang G, Peng J et al (2013) Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale 5:4015–4039CrossRefGoogle Scholar
  219. 219.
    Nguyen KT, Zhao Y (2014) Integrated graphene/nanoparticle hybrids for biological and electronic applications. Nanoscale 6:6245–6266CrossRefGoogle Scholar
  220. 220.
    Zhang H, Gruner G, Zhao Y (2013) Recent advancements of graphene in biomedicine. J Mater Chem B 1:2542–2567CrossRefGoogle Scholar
  221. 221.
    Zhang J, Yang H, Shen G, Cheng P et al (2010) Reduction of graphene oxide vial-ascorbic acid. Chem Commun 46:1112–1114CrossRefGoogle Scholar
  222. 222.
    Nurunnabi M, Khatun Z, Reeck GR, Lee DY et al (2013) Near infrared photoluminescent graphene nanoparticles greatly expand their use in noninvasive biomedical imaging. Chem Commun 49:5079–5081CrossRefGoogle Scholar
  223. 223.
    Shen J, Zhu Y, Chen C, Yang X et al (2011) Facile preparation and upconversion luminescence of graphene quantum dots. Chem Commun 47:2580–2582CrossRefGoogle Scholar
  224. 224.
    Wu X, Tian F, Wang W, Chen J et al (2013) Fabrication of highly fluorescent graphene quantum dots using L-glutamic acid for in vitro/in vivo imaging and sensing. J Mater Chem C 1:4676–4684CrossRefGoogle Scholar
  225. 225.
    Abdullah Al N, Lee J-E, In I, Lee H et al (2013) Target delivery and cell imaging using hyaluronic acid-functionalized graphene quantum dots. Mol Pharm 10:3736–3744CrossRefGoogle Scholar
  226. 226.
    Liu Q, Guo B, Rao Z, Zhang B et al (2013) Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging. Nano Lett 13:2436–2441CrossRefGoogle Scholar
  227. 227.
    Qian J, Wang D, Cai F-H, Xi W et al (2012) Observation of multiphoton-induced fluorescence from graphene oxide nanoparticles and applications in in vivo functional bioimaging. Angew Chem Int Ed 51:10570–10575CrossRefGoogle Scholar
  228. 228.
    Yang K, Hu L, Ma X, Ye S et al (2012) Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Adv Mater 24:1868–1872CrossRefGoogle Scholar
  229. 229.
    Wang Y, Wang H, Liu D, Song S et al (2013) Graphene oxide covalently grafted upconversion nanoparticles for combined NIR mediated imaging and photothermal/photodynamic cancer therapy. Biomaterials 34:7715–7724CrossRefGoogle Scholar
  230. 230.
    Mochalin VN, Shenderova O, Ho D, Gogotsi Y (2012) The properties and applications of nanodiamonds. Nat Nanotechnol 7:11–23CrossRefGoogle Scholar
  231. 231.
    Danilenko VV (2004) On the history of the discovery of nanodiamond synthesis. Phys Solid State 46:595–599CrossRefGoogle Scholar
  232. 232.
    Kuo Y, Hsu T-Y, Wu Y-C, Chang H-C (2013) Fluorescent nanodiamond as a probe for the intercellular transport of proteins in vivo. Biomaterials 34:8352–8360CrossRefGoogle Scholar
  233. 233.
    Wu T-J, Tzeng Y-K, Chang W-W, Cheng C-A et al (2013) Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds. Nat Nanotechnol 8:682–689CrossRefGoogle Scholar
  234. 234.
    Mohan N, Chen C-S, Hsieh H-H, Wu Y-C et al (2010) In vivo imaging and toxicity assessments of fluorescent nanodiamonds in caenorhabditis elegans. Nano Lett 10:3692–3699CrossRefGoogle Scholar
  235. 235.
    Chang B-M, Lin H-H, Su L-J, Lin W-D et al (2013) Highly fluorescent nanodiamonds protein-functionalized for cell labeling and targeting. Adv Funct Mater 23:5737–5745CrossRefGoogle Scholar
  236. 236.
    Tzeng Y-K, Faklaris O, Chang B-M, Kuo Y et al (2011) Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion. Angew Chem Int Ed 50:2262–2265CrossRefGoogle Scholar
  237. 237.
    Lin H-H, Lee H-W, Lin R-J, Huang C-W et al (2015) Tracking and finding slow-proliferating/quiescent cancer stem cells with fluorescent nanodiamonds. Small 11:4394–4402CrossRefGoogle Scholar
  238. 238.
    Alhaddad A, Adam M-P, Botsoa J, Dantelle G et al (2011) Nanodiamond as a vector for siRNA delivery to ewing sarcoma cells. Small 7:3087–3095CrossRefGoogle Scholar
  239. 239.
    Havlik J, Petrakova V, Rehor I, Petrak V et al (2013) Boosting nanodiamond fluorescence: towards development of brighter probes. Nanoscale 5:3208–3211CrossRefGoogle Scholar
  240. 240.
    Igarashi R, Yoshinari Y, Yokota H, Sugi T et al (2012) Real-time background-free selective imaging of fluorescent nanodiamonds in vivo. Nano Lett 12:5726–5732CrossRefGoogle Scholar
  241. 241.
    Chen G, Ohulchanskyy TY, Kumar R, Ågren H et al (2010) Ultrasmall monodisperse NaYF4:Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence. ACS Nano 4:3163–3168CrossRefGoogle Scholar
  242. 242.
    Wang Y, Cai R, Liu Z (2011) Controlled synthesis of NaYF4:Yb,Er nanocrystals with upconversion fluorescence via a facile hydrothermal procedure in aqueous solution. CrystEngComm 13:1772–1774CrossRefGoogle Scholar
  243. 243.
    Ye X, Collins JE, Kang Y, Chen J et al (2010) Morphologically controlled synthesis of colloidal upconversion nanophosphors and their shape-directed self-assembly. Proc Natl Acad Sci 107:22430–22435CrossRefGoogle Scholar
  244. 244.
    Yang D, Li C, Li G, Shang M et al (2011) Colloidal synthesis and remarkable enhancement of the upconversion luminescence of BaGdF5:Yb3+/Er3+ nanoparticles by active-shell modification. J Mater Chem 21:5923–5927CrossRefGoogle Scholar
  245. 245.
    Budijono SJ, Shan J, Yao N, Miura Y et al (2010) Synthesis of stable block-copolymer-protected NaYF4:Yb3+,Er3+ up-converting phosphor nanoparticles. Chem Mater 22:311–318CrossRefGoogle Scholar
  246. 246.
    Pedroni M, Piccinelli F, Passuello T, Giarola M et al (2011) Lanthanide doped upconverting colloidal CaF2 nanoparticles prepared by a single-step hydrothermal method: toward efficient materials with near infrared-to-near infrared upconversion emission. Nanoscale 3:1456–1460CrossRefGoogle Scholar
  247. 247.
    Liu Q, Li C, Yang T, Yi T et al (2010) “Drawing” upconversion nanophosphors into water through host-guest interaction. Chem Commun 46:5551–5553CrossRefGoogle Scholar
  248. 248.
    Liu Q, Chen M, Sun Y, Chen G et al (2011) Multifunctional rare-earth self-assembled nanosystem for tri-modal upconversion luminescence/fluorescence/positron emission tomography imaging. Biomaterials 32:8243–8253CrossRefGoogle Scholar
  249. 249.
    Shan J, Kong W, Wei R, Yao N et al (2010) An investigation of the thermal sensitivity and stability of the β-NaYF4:Yb,Er upconversion nanophosphors. J Appl Phys 107:054901CrossRefGoogle Scholar
  250. 250.
    Wang F, Wang J, Liu X (2010) Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. Angew Chem Int Ed 49:7456–7460CrossRefGoogle Scholar
  251. 251.
    Hu D, Chen M, Gao Y, Li F et al (2011) A facile method to synthesize superparamagnetic and up-conversion luminescent NaYF4:Yb,Er/Tm@SiO2@Fe3O4 nanocomposite particles and their bioapplication. J Mater Chem 21:11276–11282CrossRefGoogle Scholar
  252. 252.
    Zhou J, Yao L, Li C, Li F (2010) A versatile fabrication of upconversion nanophosphors with functional-surface tunable ligands. J Mater Chem 20:8078–8085CrossRefGoogle Scholar
  253. 253.
    Wang Z-L, Hao J, Chan HLW, Law G-L et al (2011) Simultaneous synthesis and functionalization of water-soluble up-conversion nanoparticles for in-vitro cell and nude mouse imaging. Nanoscale 3:2175–2181CrossRefGoogle Scholar
  254. 254.
    Cao T, Yang Y, Gao Y, Zhou J et al (2011) High-quality water-soluble and surface-functionalized upconversion nanocrystals as luminescent probes for bioimaging. Biomaterials 32:2959–2968CrossRefGoogle Scholar
  255. 255.
    Chen C, Sun L-D, Li Z-X, Li L-L et al (2010) Ionic liquid-based route to spherical NaYF4 nanoclusters with the assistance of microwave radiation and their multicolor upconversion luminescence. Langmuir 26:8797–8803CrossRefGoogle Scholar
  256. 256.
    Xiong L, Yang T, Yang Y, Xu C et al (2010) Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors. Biomaterials 31:7078–7085CrossRefGoogle Scholar
  257. 257.
    Chen G, Shen J, Ohulchanskyy TY, Patel NJ et al (2012) (α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging. ACS Nano 6:8280–8287CrossRefGoogle Scholar
  258. 258.
    Wang Y-F, Liu G-Y, Sun L-D, Xiao J-W et al (2013) Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect. ACS Nano 7:7200–7206CrossRefGoogle Scholar
  259. 259.
    Zhan Q, Qian J, Liang H, Somesfalean G et al (2011) Using 915 nm laser excited Tm3+/Er3+/Ho3+-doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation. ACS Nano 5:3744–3757CrossRefGoogle Scholar
  260. 260.
    Sun L-D, Wang Y-F, Yan C-H (2014) Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles: small size and tunable emission/excitation spectra. Acc Chem Res 47:1001–1009CrossRefGoogle Scholar
  261. 261.
    Cheng L, Yang K, Shao M, Lee S-T et al (2011) Multicolor in vivo imaging of upconversion nanoparticles with emissions tuned by luminescence resonance energy transfer. J Phys Chem C 115:2686–2692CrossRefGoogle Scholar
  262. 262.
    Liu Y, Chen M, Cao T, Sun Y et al (2013) A cyanine-modified nanosystem for in vivo upconversion luminescence bioimaging of methylmercury. J Am Chem Soc 135:9869–9876CrossRefGoogle Scholar
  263. 263.
    Yu X-F, Sun Z, Li M, Xiang Y et al (2010) Neurotoxin-conjugated upconversion nanoprobes for direct visualization of tumors under near-infrared irradiation. Biomaterials 31:8724–8731CrossRefGoogle Scholar
  264. 264.
    Liu Q, Sun Y, Yang T, Feng W et al (2011) Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo. J Am Chem Soc 133:17122–17125CrossRefGoogle Scholar
  265. 265.
    Ai X, Lyu L, Zhang Y, Tang Y et al (2017) Remote regulation of membrane channel activity by site-specific localization of lanthanide-doped upconversion nanocrystals. Angew Chem Int Ed 56:3031–3035CrossRefGoogle Scholar
  266. 266.
    N. G. Khlebtsov and L. A. Dykman, Optical properties and biomedical applications of plasmonic nanoparticles, J Quant Spectrosc Radiat Transf, 2010, 111: 1–35CrossRefGoogle Scholar
  267. 267.
    Shang L, Dong S, Nienhaus GU (2011) Ultra-small fluorescent metal nanoclusters: synthesis and biological applications. Nano Today 6:401–418CrossRefGoogle Scholar
  268. 268.
    Liu C-L, Wu H-T, Hsiao Y-H, Lai C-W et al (2011) Insulin-directed synthesis of fluorescent gold nanoclusters: preservation of insulin bioactivity and versatility in cell imaging. Angew Chem Int Ed 50:7056–7060CrossRefGoogle Scholar
  269. 269.
    Polavarapu L, Manna M, Xu Q-H (2011) Biocompatible glutathione capped gold clusters as one- and two-photon excitation fluorescence contrast agents for live cells imaging. Nanoscale 3:429–434CrossRefGoogle Scholar
  270. 270.
    Shang L, Dorlich RM, Brandholt S, Schneider R et al (2011) Facile preparation of water-soluble fluorescent gold nanoclusters for cellular imaging applications. Nanoscale 3:2009–2014CrossRefGoogle Scholar
  271. 271.
    Gao S, Chen D, Li Q, Ye J et al (2014) Near-infrared fluorescence imaging of cancer cells and tumors through specific biosynthesis of silver nanoclusters. Sci Rep 4:4384CrossRefGoogle Scholar
  272. 272.
    Nie LB, Xiao XY, Yang HC (2016) Preparation and biomedical applications of gold nanocluster, Jounal of Nanoscience. Nanotechnology 16:8164–8175Google Scholar
  273. 273.
    Kim Y-H, Jeon J, Hong SH, Rhim W-K et al (2011) Tumor targeting and imaging using cyclic RGD-PEGylated gold nanoparticle probes with directly conjugated iodine-125. Small 7:2052–2060CrossRefGoogle Scholar
  274. 274.
    Mathew A, Pradeep T (2014) Noble metal clusters: applications in energy, environment, and biology. Part Part Syst Charact 31:1017–1053CrossRefGoogle Scholar
  275. 275.
    Qiu L, Chen T, Öçsoy I, Yasun E et al (2015) A cell-targeted, size-photocontrollable, nuclear-uptake nanodrug delivery system for drug-resistant cancer therapy. Nano Lett 15:457–463CrossRefGoogle Scholar
  276. 276.
    Wu X, He X, Wang K, Xie C et al (2010) Ultrasmall near-infrared gold nanoclusters for tumor fluorescence imaging in vivo. Nanoscale 2:2244–2249CrossRefGoogle Scholar
  277. 277.
    Guo C, Irudayaraj J (2011) Fluorescent Ag clusters via a protein-directed approach as a Hg(II) ion sensor. Anal Chem 83:2883–2889CrossRefGoogle Scholar
  278. 278.
    Habeeb Muhammed MA, Verma PK, Pal SK, Retnakumari A et al (2010) Luminescent quantum clusters of gold in bulk by albumin-induced core etching of nanoparticles: metal ion sensing, metal-enhanced luminescence, and biolabeling. Chem Eur J 16:10103–10112CrossRefGoogle Scholar
  279. 279.
    Wen F, Dong Y, Feng L, Wang S et al (2011) Horseradish peroxidase functionalized fluorescent gold nanoclusters for hydrogen peroxide sensing. Anal Chem 83:1193–1196CrossRefGoogle Scholar
  280. 280.
    Pitchiaya S, Krishnan Y (2006) First blueprint, now bricks: DNA as construction material on the nanoscale. Chem Soc Rev 35:1111–1121CrossRefGoogle Scholar
  281. 281.
    Zhou C, Long M, Qin Y, Sun X et al (2011) Luminescent gold nanoparticles with efficient renal clearance. Angew Chem Int Ed 50:3168–3172CrossRefGoogle Scholar
  282. 282.
    Sun M, Xu L, Ma W, Wu X et al (2016) Hierarchical plasmonic nanorods and upconversion core–satellite nanoassemblies for multimodal imaging-guided combination phototherapy. Adv Mater 28:898–904CrossRefGoogle Scholar
  283. 283.
    Lim WQ, Phua SZ, Xu HV, Sreejith S et al (2016) Recent advances in multifunctional silica-based hybrid nanocarriers for bioimaging and cancer therapy. Nanoscale 8:12510–12519CrossRefGoogle Scholar
  284. 284.
    Cheng S-H, Li F-C, Souris JS, Yang C-S et al (2012) Visualizing dynamics of sub-hepatic distribution of nanoparticles using intravital multiphoton fluorescence microscopy. ACS Nano 6:4122–4131CrossRefGoogle Scholar
  285. 285.
    Gu L, Hall DJ, Qin Z, Anglin E et al (2013) In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles. Nat Commun 4:2326CrossRefGoogle Scholar
  286. 286.
    Croissant JG, Qi C, Mongin O, Hugues V et al (2015) Disulfide-gated mesoporous silica nanoparticles designed for two-photon-triggered drug release and imaging. J Mater Chem B 3:6456–6461CrossRefGoogle Scholar
  287. 287.
    Geng J, Goh CC, Qin W, Liu R et al (2015) Silica shelled and block copolymer encapsulated red-emissive AIE nanoparticles with 50% quantum yield for two-photon excited vascular imaging. Chem Commun 51:13416–13419CrossRefGoogle Scholar
  288. 288.
    Wu Y, Shi M, Zhao L, Feng W et al (2014) Visible-light-excited and europium-emissive nanoparticles for highly-luminescent bioimaging in vivo. Biomaterials 35:5830–5839CrossRefGoogle Scholar
  289. 289.
    Sreejith S, Ma X, Zhao Y (2012) Graphene oxide wrapping on squaraine-loaded mesoporous silica nanoparticles for bioimaging. J Am Chem Soc 134:17346–17349CrossRefGoogle Scholar
  290. 290.
    Nguyen KT, Sreejith S, Joseph J, He T et al (2014) Poly(acrylic acid)-capped and dye-loaded graphene oxide-mesoporous silica: a nano-sandwich for two-photon and photoacoustic dual-mode imaging. Part Part Syst Charact 31:1060–1066CrossRefGoogle Scholar
  291. 291.
    Helle M, Rampazzo E, Monchanin M, Marchal F et al (2013) Surface chemistry architecture of silica nanoparticles determine the efficiency of in vivo fluorescence lymph node mapping. ACS Nano 7:8645–8657CrossRefGoogle Scholar
  292. 292.
    Xiao Q, Zheng X, Bu W, Ge W et al (2013) A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy. J Am Chem Soc 135:13041–13048CrossRefGoogle Scholar
  293. 293.
    Kumar R, Roy I, Ohulchanskky TY, Vathy LA et al (2010) In vivo biodistribution and clearance studies using multimodal organically modified silica nanoparticles. ACS Nano 4:699–708CrossRefGoogle Scholar
  294. 294.
    Wu X, Chang S, Sun X, Guo Z et al (2013) Constructing NIR silica-cyanine hybrid nanocomposite for bioimaging in vivo: a breakthrough in photo-stability and bright fluorescence with large stokes shift. Chem Sci 4:1221–1228CrossRefGoogle Scholar
  295. 295.
    Wang R, Zhou L, Wang W, Li X et al (2017) In vivo gastrointestinal drug-release monitoring through second near-infrared window fluorescent bioimaging with orally delivered microcarriers. Nat Commun 8:14702CrossRefGoogle Scholar
  296. 296.
    Huang P, Lin J, Wang S, Zhou Z et al (2013) Photosensitizer-conjugated silica-coated gold nanoclusters for fluorescence imaging-guided photodynamic therapy. Biomaterials 34:4643–4654CrossRefGoogle Scholar
  297. 297.
    McVey BFP, Tilley RD (2014) Solution synthesis, optical properties, and bioimaging applications of silicon nanocrystals. Acc Chem Res 47:3045–3051CrossRefGoogle Scholar
  298. 298.
    Erogbogbo F, Yong K-T, Roy I, Hu R et al (2011) In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals. ACS Nano 5:413–423CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Chemistry and Biological Chemistry, School of Physical and Mathematical SciencesNanyang Technological UniversitySingaporeSingapore
  2. 2.School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations