Advertisement

In Vivo Near-Infrared Fluorescence Imaging Based on Polymer Dots

  • Yixiao Guo
  • Liqin XiongEmail author
Chapter

Abstract

Conjugated polymer dots emerge as attractive molecular imaging nanoprobes in living animals because of their excellent optical properties including bright fluorescence intensity, excellent photostability, high emission rates, and low intrinsic cytotoxicity. In this chapter we focused on the preparation of near-infrared (NIR)-emitting polymer dots by nano-precipitation method (matrix-encapsulation method), miniemulsion method, and in situ colloidal Knoevenagel polymerization methods and their applications for in vivo NIR fluorescence imaging, including imaging of lymphatic basins, tumors, zebrafish, and oxygen.

List of Abbreviations

AIE

Aggregation-induced-emission

BODIPY

Phthalocyanine- and boron dipyrrin

BRET

Bioluminescence resonance energy transfer

BSA

Bovine serum albumin

BTE

Bisthienylethene derivative, 1,2-bis(2,4-dimethyl-5-phenyl-3-thienyl)-3,3,4,4,5,5-hexafluoro-1-cyclopentene

BTTP

5,7-bis(5-bromo-2-thienyl)-2,3-dimethylthieno[3,4-b]pyrazine

BTTPF

BTTP copolymized with 2,7-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9,9-bis[30-(dimethylamino)propyl] fluorine

C7-FA

Homemade heptylamine modified folate

CN-PPVs

Cyanosubstituted derivatives of poly(p-phenylenevinylene)

CPDP-FA NPs

CP-loaded DSPE-PEG-folic acid nanoparticles

cRGD

Cyclic RGD peptides

cvCP

Anovinylene-backboned conjugated polymers

cvPDs

Cyanovinylene-backboned polymer dots

CZ

3,6-dibromo-9-(2-butyloctyl)-9H–carbazole

Dox

Doxorubicin

DPPF

poly{3-(5-(9-hexyl-9-octyl-9H-uoren-2-yl)thiophen-2-yl)-2,5-bis(2-hexyldecyl)-6-(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione}

DSPE

2-distearoyl-sn-glycero-3-phosphoethanolamine

DSPE-PEG2000

1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]

DSPE-PEG-NH2

1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000]

DTT

2,6-dibromo-4,4-dihexyl-4H-cyclopenta[1,2-b:5,4-b’]dithiophene

EPR

Enhanced permeability and retention

FRET

Fluorescence resonance energy transfer

MEH-PPV

poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]

NanoDRONE

Dual-color SPN-based NIR nanoprobe for the detection of RONS

NIR775

Silicon 2, 3-naphthalocyanine bis(trihexylsilyloxide)

PCFDP

[9,9′-dihexyl-2,7-bis(1-cyanovinylene)fluorenylene-alt-co-2,5-bis(N,N′-diphenylamino)-1,4-phenylene]

PCPDTBT

poly[2,6-(4,4-bis-(2-ethylhexyl)-4H–cyclopenta[2,1-b;3,4-b0]dithiophene)-alt-4,7(2,1,3-benzothiadiazole)]

PD-1

PS-PEG-COOH modified MEH-PPV polymer dots

PD-2

PSMA modified MEH-PPV polymer dots

PD-3

PS-PEG-COOH modified and Luc-8 conjugated MEH-PPV polymer dots

PD-4

PS-PEG-COOH modified and RGD conjugated MEH-PPV polymer dots

PD-5

PS-PEG-COOH modified, RGD and Luc-8 conjugated MEH-PPV polymer dots

PDTPDTT

poly[5-octyl-1-(5-(4,4,9,9-tetrakis(4-hexylphenyl)-4,9-dihydro-s-indaceno[1,2-b:5,6-b0]dithiophen-2-yl)thiophen-2-yl)-3-(thiophen-2-yl)-4H–thieno[3,4-c]pyrrole-4, 6(5H)-dione]

PEG-NH2

Methoxypolyethylene glycol amine 2000

PFBT

poly(9,9-dioctylfluorene-alt-benzothiadiazole) average Mn 10,000–20,000

PFBTDBT10

poly[(9,9-dihexylfluorene)-co-2,1,3-benzothiadiazole-co-4,7-di(thiophen-2-yl)-2,1,3-benzothiadiazole]

PFVBT

poly[9,9-bis(6′-(N,N-dimethylamino)hexyl)fluorenyldivinylenealt-4,7-(2,1,3,-benzothiadiazole)]

PIDT-DBT

poly{[4,4,9,9-tetrakis(4-(octyloxy)phenyl-4,9-dihydro-s-indaceno[1,2-b:5,6-b′]dithiophene)]-alt-co-[4,7-di(thiophen-2-yl)-2,1,3-benzothiadiazole]}

PLGA-PEG-FOL

poly(lactic-co-glycolic acid)-poly(ethylene glycol)-folate

PSBTBT

poly[2,6-(4,40-bis(2-ethylhexyl)dithieno[3,2-b:20,30-d]silole)-alt-4,7(2,1,3-benzothiadiazole)]

PSMA

poly(styrene-alt-maleic anhydride)

PS-PEG-COOH

Polystyrene-graft-ethyleneoxide functionalized with carboxyl groups

PtTFPPBr2

Platinum(II) meso-bis(pentafluorophenyl)bis-(4-bromophenyl)porphyrin

RONS

Reactive oxygen and nitrogen species

ROS

Reactive oxygen species

SPNs

Semiconducting polymer nanoparticles

TC6FQ

5,8-Bis(5-bromo-4-hexylthiophen-2-yl)-6,7-difluoro-2,3-bis-(3-(hexyloxy)phenyl)quinoxaline

TEOS

Tetraethyl orthosilicate

TFPP

meso-bis(pentafluorophenyl)bis-(4-bromophenyl)porphyrin

TPE-TPA-DCM

2-(2,6-Bis((E)-4-(phenyl(4′-(1,2,2-triphenylvinyl)-[1,1′-biphenyl]-4-yl)amino)styryl)-4H–pyran-4-ylidene)malononitrile

References

  1. 1.
    Ntziachristos V, Ripoll J, Wang LHV, Weissleder R (2005) Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol 23(3):313–320CrossRefGoogle Scholar
  2. 2.
    Contag CH, Bachmann MH (2002) Advances in in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng 4:235–260CrossRefGoogle Scholar
  3. 3.
    Wagnieres GA, Star WM, Wilson BC (1998) In vivo fluorescence spectroscopy and imaging for oncological applications. Photochem Photobiol 68(5):603–632CrossRefGoogle Scholar
  4. 4.
    van Dam GM, Themelis G, Crane LM, Harlaar NJ, Pleijhuis RG, Kelder W, Sarantopoulos A, De Jong JS, Arts HJ, Van der Zee AG, Bart J, Low PS, Ntziachristos V (2011) Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results. Nat Med 17(10):1315–1319CrossRefGoogle Scholar
  5. 5.
    Vahrmeijer AL, Hutteman M, van der Vorst JR, Van de Velde CJ, Frangioni JV (2013) Image-guided cancer surgery using near-infrared fluorescence. Nat Rev Clin Oncol 10(9):507CrossRefGoogle Scholar
  6. 6.
    Pecher J, Mecking S (2010) Nanoparticles of conjugated polymers. Chem Rev 110(10):6260–6279CrossRefGoogle Scholar
  7. 7.
    Tian ZY, Yu JB, Wu CF, Szymanski C, McNeill J (2010) Amplified energy transfer in conjugated polymer nanoparticle tags and sensors. Nanoscale 2(10):1999–2011CrossRefGoogle Scholar
  8. 8.
    Massey M, Wu M, Conroy EM, Algar WR (2015) Mind your P’s and Q’s: the coming of age of semiconducting polymer dots and semiconductor quantum dots in biological applications. Curr Opin Biotechnol 34:30–34CrossRefGoogle Scholar
  9. 9.
    Zhu CL, Liu LB, Yang Q, Lv FT, Wang S (2012) Water-soluble conjugated polymers for imaging, diagnosis, and therapy. Chem Rev 112(8):4687–4735CrossRefGoogle Scholar
  10. 10.
    Pu K, Chattopadhyay N, Rao J (2016) Recent advances of semiconducting polymer nanoparticles in in vivo molecular imaging. J Control Release 240:312–322CrossRefGoogle Scholar
  11. 11.
    Wu CF, Chiu DT (2013) Highly fluorescent semiconducting polymer dots for biology and medicine. Angew Chem Int Ed 52(11):3086–3109CrossRefGoogle Scholar
  12. 12.
    Peng HS, Chiu DT (2015) Soft fluorescent nanomaterials for biological and biomedical imaging. Chem Soc Rev 44(14):4699–4722CrossRefGoogle Scholar
  13. 13.
    Li K, Liu B (2014) Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging. Chem Soc Rev 43(18):6570–6597CrossRefGoogle Scholar
  14. 14.
    Pu KY, Liu B (2011) Fluorescent conjugated polyelectrolytes for bioimaging. Adv Funct Mater 21:3408–3423CrossRefGoogle Scholar
  15. 15.
    Feng L, Zhu C, Yuan H, Liu L, Lv F, Wang S (2013) Conjugated polymer nanoparticles: preparation, properties, functionalization and biological applications. Chem Soc Rev 42(16):6620–6633CrossRefGoogle Scholar
  16. 16.
    Chan YH, Wu PJ (2015) Semiconducting polymer nanoparticles as fluorescent probes for biological imaging and sensing. Part Part Syst Charact 32(1):11–18CrossRefGoogle Scholar
  17. 17.
    Li J, Liu J, Wei CW, Liu B, O'Donnell M, Gao X (2013) Emerging applications of conjugated polymers in molecular imaging. Phys Chem Chem Phys 15(40):17006–17015CrossRefGoogle Scholar
  18. 18.
    Jin Y, Ye F, Zeigler M, Wu C, Chiu DT (2011) Near-infrared fluorescent dye-doped semiconducting polymer dots. ACS Nano 5(2):1468–1475CrossRefGoogle Scholar
  19. 19.
    Pu KY, Shuhendler AJ, Valta MP, Cui L, Saar M, Peehl DM, Rao JH (2014) Phosphorylcholine-coated semiconducting polymer nanoparticles as rapid and efficient labeling agents for in vivo cell tracking. Adv Healthc Mater 3(8):1292–1298CrossRefGoogle Scholar
  20. 20.
    Ding D, Liu J, Feng G, Li K, Hu Y, Liu B (2013) Bright far-red/near-infrared conjugated polymer nanoparticles for in vivo bioimaging. Small 9(18):3093–3102CrossRefGoogle Scholar
  21. 21.
    Li K, Ding D, Huo D, Pu K, Thao NNP, Hu Y, Li Z, Liu B (2012) Conjugated polymer based nanoparticles as dual-modal probes for targeted in vivo fluorescence and magnetic resonance imaging. Adv Funct Mater 22(15):3107–3115CrossRefGoogle Scholar
  22. 22.
    Ding D, Li K, Qin W, Zhan R, Hu Y, Liu J, Tang BZ, Liu B (2013) Conjugated polymer amplified far-red/near-infrared fluorescence from nanoparticles with aggregation-induced emission characteristics for targeted in vivo imaging. Adv Healthc Mater 2(3):500–507CrossRefGoogle Scholar
  23. 23.
    Geng J, Li K, Ding D, Zhang X, Qing W, Liu J, Tang BZ, Liu B (2012) Lipid-PEG-folate encapsulated nanoparticles with aggregation induced emission characteristics: cellular uptake mechanism and two-photon fluorescence imaging. Small 8(23):3655–3663CrossRefGoogle Scholar
  24. 24.
    Wei Q, Ding D, Liu J, Yuan WZ, Hu Y, Liu B, Tang BZ (2012) Biocompatible nanoparticles with aggregation-induced emission characteristics as far-red/near-infrared fluorescent bioprobes for in vitro and in vivo imaging applications. Adv Funct Mater 22:771–779CrossRefGoogle Scholar
  25. 25.
    Hong G, Zou Y, Antaris AL, Diao S, Wu D, Cheng K, Chen X, Zhang C, Liu B, He Y, Wu JZ, Yuan J, Zhang B, Tao Z, Fukunaga C, Dai H (2014) Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window. Nat Commun 5:4206Google Scholar
  26. 26.
    Liu HY, Wu PJ, Kuo SY, Chen CP, Chang EH, Wu CY, Chan YH (2015) Quinoxaline-based polymer dots with ultrabright red to near-infrared fluorescence for in vivo biological imaging. J Am Chem Soc 137(32):10420–10429CrossRefGoogle Scholar
  27. 27.
    Liou SY, Ke CS, Chen JH, Luo YW, Kuo SY, Chen YH, Fang CC, Wu CY, Chiang CM, Chan YH (2016) Tuning the emission of semiconducting polymer dots from green to near-infrared by alternating donor monomers and their applications for in vivo biological imaging. ACS Macro Lett 5(1):154–157CrossRefGoogle Scholar
  28. 28.
    Ke CS, Fang CC, Yan JY, Tseng PJ, Pyle JR, Chen CP, Lin SY, Chen J, Zhang X, Chan YH (2017) Molecular engineering and design of semiconducting polymer dots with narrow-band, near-infrared emission for in vivo biological imaging. ACS Nano.  https://doi.org/10.1021/acsnano.7b00215
  29. 29.
    Zhu H, Fang Y, Zhen X, Wei N, Gao Y, Luo KQ, Xu C, Duan H, Ding D, Chen P, Pu K (2016) Multilayered semiconducting polymer nanoparticles with enhanced NIR fluorescence for molecular imaging in cells, zebrafish and mice. Chem Sci 7(8):5118CrossRefGoogle Scholar
  30. 30.
    Xiong LQ, Shuhendler AJ, Rao JH (2012) Self-luminescing BRET-FRET near-infrared dots for in vivo lymph-node mapping and tumour imaging. Nat Commun 3:1193CrossRefGoogle Scholar
  31. 31.
    Xiong LQ, Cao FW, Cao XM, Guo YX, Zhang YM, Cai X (2015) Long-term-stable near-infrared polymer dots with ultrasmall size and narrow-band emission for imaging tumor vasculature in vivo. Bioconjug Chem 26(5):817–821CrossRefGoogle Scholar
  32. 32.
    Xiong LQ, Guo Y, Zhang Y, Cao F (2016) Highly luminescent and photostable near-infrared fluorescent polymer dots for long-term tumor cell tracking in vivo. J Mater Chem B 4:202–206CrossRefGoogle Scholar
  33. 33.
    Cao F, Xiong LQ (2016) Folic acid functionalized PFBT fluorescent polymer dots for tumor imaging. Chin J Chem 34:570–575CrossRefGoogle Scholar
  34. 34.
    Liu J, Li K, Liu B (2015) Far-red/near-infrared conjugated polymer nanoparticles for long-term in situ monitoring of liver tumor growth. Adv Sci 2(5):1500008CrossRefGoogle Scholar
  35. 35.
    Palner M, Pu K, Shao S, Rao J (2015) Semiconducting polymer nanoparticles with persistent near-infrared luminescence for in vivo optical imaging. Angew Chem Int Ed Engl 54(39):11477–11480CrossRefGoogle Scholar
  36. 36.
    Zhao Q, Li F, Huang W (2015) Fluorescent/phosphorescent dual-emissive conjugated polymer dots for hypoxia bioimaging. Chem Sci 6(3):1825–1831CrossRefGoogle Scholar
  37. 37.
    Pu K, Shuhendler AJ, Rao J (2013) Semiconducting polymer nanoprobe for in vivo imaging of reactive oxygen and nitrogen species. Angew Chem Int Ed Engl 52(39):10325–10329CrossRefGoogle Scholar
  38. 38.
    Li DD, Wang JX, Ma Y, Qian HS, Wang D, Wang L, Zhang G, Qiu L, Wang YC, Yang XZ, Donor-Acceptor Conjugated A (2016) Polymer with alternating isoindigo derivative and bithiophene units for near-infrared modulated cancer thermo-chemotherapy. ACS Appl Mater Interfaces 8(30):19312–19320CrossRefGoogle Scholar
  39. 39.
    Yu JC, Chen L, Zhang YQ, Yao XK, Qian CG, Huang J, Zhu S, Jiang XQ, Shen QD, Gu Z (2014) pH-responsive and near-infrared-emissive polymer nanoparticles for simultaneous delivery, release, and fluorescence tracking of doxorubicin in vivo. Chem Commun 50(36):4699–4702CrossRefGoogle Scholar
  40. 40.
    Kim S, Lim CK, Na J, Lee YD, Kim K, Choi K, Leary JF, Kwon IC (2010) Conjugated polymer nanoparticles for biomedical in vivo imaging. Chem Commun 46(10):1617CrossRefGoogle Scholar
  41. 41.
    Jeong K, Park S, Lee YD, Lim C, Kim J, Chung BH, Kwon IC, Park CR, Kim S (2013) Conjugated polymer/photochromophore binary nanococktails: bistable photoswitching of near-infrared fluorescence for in vivo imaging. Adv Mater 25(39):5574–5580CrossRefGoogle Scholar
  42. 42.
    Dmitriev RI, Borisov SM, Düssmann H, Sun S, Müller BJ, Prehn J, Baklaushev VP, Klimant I, Papkovsky DB (2015) Versatile conjugated polymer nanoparticles for high-resolution O2 imaging in cells and 3D tissue models. ACS Nano 9(5):5275–5288CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Nano Biomedical Research Center, School of Biomedical Engineering, Med-X Research InstituteShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations