Advertisement

Dendrimer-Based Nanoplatforms for SPECT Imaging Applications

  • Lingzhou Zhao
  • Xiangyang ShiEmail author
  • Jinhua ZhaoEmail author
Chapter

Abstract

Dendrimers can be functionalized with multiple imaging and therapeutic moieties to establish dendrimer-based nanoplatforms for various applications. In this chapter we describe the recent progress in dendrimer-based nanomaterials for SPECT imaging applications with different purposes.

Notes

Acknowledgments

This research is financially supported by the National Natural Science Foundation of China (81671712, 81401440), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, and the Sino-German Center for Research Promotion (GZ899). L. Zhao thanks the support from the Shanghai Sailing Program (16YF1409300).

References

  1. 1.
    Collins FS, Varmus H (2015) A new initiative on precision medicine. N Engl J Med 372(9):793–795CrossRefGoogle Scholar
  2. 2.
    Jameson JL, Longo DL (2015) Precision medicine – personalized, problematic, and promising. N Engl J Med 372(23):2229–2234CrossRefGoogle Scholar
  3. 3.
    Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452(7187):580–589CrossRefGoogle Scholar
  4. 4.
    Pysz MA, Gambhir SS, Willmann JK (2010) Molecular imaging: current status and emerging strategies. Clin Radiol 65(7):500–516CrossRefGoogle Scholar
  5. 5.
    Kircher MF, Hricak H, Larson SM (2012) Molecular imaging for personalized cancer care. Mol Oncol 6(2):182–195CrossRefGoogle Scholar
  6. 6.
    Naumova AV, Modo M, Moore A, Murry CE, Frank JA (2014) Clinical imaging in regenerative medicine. Nat Biotechnol 32(8):804–818CrossRefGoogle Scholar
  7. 7.
    Chan KW-Y, Wong W-T (2007) Small molecular gadolinium(III) complexes as MRI contrast agents for diagnostic imaging. Coord Chem Rev 251(17–20):2428–2451CrossRefGoogle Scholar
  8. 8.
    Li J, Zheng L, Cai H, Sun W, Shen M, Zhang G, Shi X (2013) Polyethyleneimine-mediated synthesis of folic acid-targeted iron oxide nanoparticles for in vivo tumor MR imaging. Biomaterials 34(33):8382–8392CrossRefGoogle Scholar
  9. 9.
    Jin R, Lin B, Li D, Ai H (2014) Superparamagnetic iron oxide nanoparticles for MR imaging and therapy: design considerations and clinical applications. Curr Opin Pharmacol 18:18–27CrossRefGoogle Scholar
  10. 10.
    Li L, Gao F, Jiang W, Wu X, Cai Y, Tang J, Gao X, Gao F (2016) Folic acid-conjugated superparamagnetic iron oxide nanoparticles for tumor-targeting MR imaging. Drug Deliv 23(5):1726–1733Google Scholar
  11. 11.
    Mustafa R, Zhou B, Yang J, Zheng L, Zhang G, Shi X (2016) Dendrimer-functionalized laponite nanodisks loaded with gadolinium for T1-weighted MR imaging applications. RSC Adv 6(97):95112–95119CrossRefGoogle Scholar
  12. 12.
    Suzuki H, Oshima H, Shiraki N, Ikeya C, Shibamoto Y (2004) Comparison of two contrast materials with different iodine concentrations in enhancing the density of the aorta, portal vein and liver at multi-detector row CT: a randomized study. Eur Radiol 14(11):2099–2104CrossRefGoogle Scholar
  13. 13.
    Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM (2006) Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 79(939):248–253CrossRefGoogle Scholar
  14. 14.
    Popovtzer R, Agrawal A, Kotov NA, Popovtzer A, Balter J, Carey TE, Kopelman R (2008) Targeted gold nanoparticles enable molecular ct imaging of cancer. Nano Lett 8(12):4593–4596CrossRefGoogle Scholar
  15. 15.
    Peng C, Zheng L, Chen Q, Shen M, Guo R, Wang H, Cao X, Zhang G, Shi X (2012) PEGylated dendrimer-entrapped gold nanoparticles for in vivo blood pool and tumor imaging by computed tomography. Biomaterials 33(4):1107–1119CrossRefGoogle Scholar
  16. 16.
    Zhang Y, Wen S, Zhao L, Li D, Liu C, Jiang W, Gao X, Gu W, Ma N, Zhao J, Shi X, Zhao Q (2016) Ultrastable polyethyleneimine-stabilized gold nanoparticles modified with polyethylene glycol for blood pool, lymph node and tumor CT imaging. Nanoscale 8(10):5567–5577CrossRefGoogle Scholar
  17. 17.
    Ametamey SM, Honer M, Schubiger PA (2008) Molecular imaging with PET. Chem Rev 108(5):1501–1516CrossRefGoogle Scholar
  18. 18.
    Fletcher JW, Djulbegovic B, Soares HP, Siegel BA, Lowe VJ, Lyman GH, Coleman RE, Wahl R, Paschold JC, Avril N, Einhorn LH, Suh WW, Samson D, Delbeke D, Gorman M, Shields AF (2008) Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med 49(3):480–508CrossRefGoogle Scholar
  19. 19.
    Mosconi L, Mistur R, Switalski R, Tsui WH, Glodzik L, Li Y, Pirraglia E, De Santi S, Reisberg B, Wisniewski T, de Leon MJ (2009) FDG-PET changes in brain glucose metabolism from normal cognition to pathologically verified Alzheimer’s disease. Eur J Nucl Med Mol Imaging 36(5):811–822CrossRefGoogle Scholar
  20. 20.
    Brindle K (2008) New approaches for imaging tumour responses to treatment. Nat Rev Cancer 8(2):94–107CrossRefGoogle Scholar
  21. 21.
    Shirani J, Dilsizian V (2011) Nuclear cardiac imaging in hypertrophic cardiomyopathy. J Nucl Cardiol 18(1):123–134CrossRefGoogle Scholar
  22. 22.
    Wang G, Stender AS, Sun W, Fang N (2010) Optical imaging of non-fluorescent nanoparticle probes in live cells. Analyst 135(2):215–221CrossRefGoogle Scholar
  23. 23.
    Hellebust A, Richards-Kortum R (2012) Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics. Nanomedicine (Lond) 7(3):429–445CrossRefGoogle Scholar
  24. 24.
    James ML, Gambhir SS (2012) A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev 92(2):897–965CrossRefGoogle Scholar
  25. 25.
    Cai H, Li K, Shen M, Wen S, Luo Y, Peng C, Zhang G, Shi X (2012) Facile assembly of Fe3O4@Au nanocomposite particles for dual mode magnetic resonance and computed tomography imaging applications. J Mater Chem 22(30):15110–15120CrossRefGoogle Scholar
  26. 26.
    Herschman HR (2003) Molecular imaging: looking at problems, seeing solutions. Science 302(5645):605–608CrossRefGoogle Scholar
  27. 27.
    Hoffman JM, Gambhir SS (2007) Molecular imaging: the vision and opportunity for radiology in the future. Radiology 244(1):39–47CrossRefGoogle Scholar
  28. 28.
    Luo S, Zhang E, Su Y, Cheng T, Shi C (2011) A review of NIR dyes in cancer targeting and imaging. Biomaterials 32(29):7127–7138CrossRefGoogle Scholar
  29. 29.
    Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R, Jerin J, Young J, Byars L, Nutt R (2000) A combined PET/CT scanner for clinical oncology. J Nucl Med 41(8):1369–1379Google Scholar
  30. 30.
    Keidar Z, Israel O, Krausz Y (2003) SPECT/CT in tumor imaging: technical aspects and clinical applications. Semin Nucl Med 33(3):205–218CrossRefGoogle Scholar
  31. 31.
    Jennings LE, Long NJ (2009) ‘Two is better than one’-probes for dual-modality molecular imaging. Chem Commun (24):3511–3524Google Scholar
  32. 32.
    Ogawa M, Regino CAS, Seidel J, Green MV, Xi W, Williams M, Kosaka N, Choyke PL, Kobayashi H (2009) Dual-modality molecular imaging using antibodies labeled with activatable fluorescence and a radionuclide for specific and quantitative targeted cancer detection. Bioconjug Chem 20(11):2177–2184CrossRefGoogle Scholar
  33. 33.
    Li K, Wen S, Larson AC, Shen M, Zhang Z, Chen Q, Shi X, Zhang G (2013) Multifunctional dendrimer-based nanoparticles for in vivo MR/CT dual-modal molecular imaging of breast cancer. Int J Nanomedicine 8:2589–2600CrossRefGoogle Scholar
  34. 34.
    Chen J, Sun Y, Chen Q, Wang L, Wang S, Tang Y, Shi X, Wang H (2016) Multifunctional gold nanocomposites designed for targeted CT/MR/optical trimodal imaging of human non-small cell lung cancer cells. Nanoscale 8(28):13568–13573CrossRefGoogle Scholar
  35. 35.
    Mariani G, Bruselli L, Kuwert T, Kim EE, Flotats A, Israel O, Dondi M, Watanabe N (2010) A review on the clinical uses of SPECT/CT. Eur J Nucl Med Mol Imaging 37(10):1959–1985CrossRefGoogle Scholar
  36. 36.
    Thrall MM, DeLoia JA, Gallion H, Avril N (2007) Clinical use of combined positron emission tomography and computed tomography (FDG-PET/CT) in recurrent ovarian cancer. Gynecol Oncol 105(1):17–22CrossRefGoogle Scholar
  37. 37.
    Chiti A, Kirienko M, Grégoire V (2010) Clinical use of PET-CT data for radiotherapy planning: what are we looking for? Radiother Oncol 96(3):277–279CrossRefGoogle Scholar
  38. 38.
    Delso G, Fürst S, Jakoby B, Ladebeck R, Ganter C, Nekolla SG, Schwaiger M, Ziegler SI (2011) Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med 52(12):1914–1922CrossRefGoogle Scholar
  39. 39.
    Drzezga A, Souvatzoglou M, Eiber M, Beer AJ, Fürst S, Martinez-Möller A, Nekolla SG, Ziegler S, Ganter C, Rummeny EJ, Schwaiger M (2012) First clinical experience with integrated whole-body PET/MR: comparison to PET/CT in patients with oncologic diagnoses. J Nucl Med 53(6):845–855CrossRefGoogle Scholar
  40. 40.
    Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, Tamanoi F, Zink JI (2008) Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2(5):889–896CrossRefGoogle Scholar
  41. 41.
    Rubel C, Hao H, Weibo C (2015) Image-guided drug delivery with single-photon emission computed tomography: a review of literature. Curr Drug Targets 16(6):592–609CrossRefGoogle Scholar
  42. 42.
    Guo R, Shi X (2012) Dendrimers in cancer therapeutics and diagnosis. Curr Drug Metab 13(8):1097–1109CrossRefGoogle Scholar
  43. 43.
    Chen X, Gambhir SS, Cheon J (2011) Theranostic nanomedicine. Acc Chem Res 44(10):841CrossRefGoogle Scholar
  44. 44.
    Namiki Y, Fuchigami T, Tada N, Kawamura R, Matsunuma S, Kitamoto Y, Nakagawa M (2011) Nanomedicine for cancer: lipid-based nanostructures for drug delivery and monitoring. Acc Chem Res 44(10):1080–1093CrossRefGoogle Scholar
  45. 45.
    Lusic H, Grinstaff MW (2013) X-ray-computed tomography contrast agents. Chem Rev 113(3):1641–1666CrossRefGoogle Scholar
  46. 46.
    Mintzer MA, Grinstaff MW (2011) Biomedical applications of dendrimers: a tutorial. Chem Soc Rev 40(1):173–190CrossRefGoogle Scholar
  47. 47.
    Sun W, Mignani S, Shen M, Shi X (2016) Dendrimer-based magnetic iron oxide nanoparticles: their synthesis and biomedical applications. Drug Discov Today 21(12):1873–1885CrossRefGoogle Scholar
  48. 48.
    Qiao Z, Shi X (2015) Dendrimer-based molecular imaging contrast agents. Prog Polym Sci 44:1–27CrossRefGoogle Scholar
  49. 49.
    Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1985) A new class of polymers: starburst-dendritic macromolecules. Polym J 17(1):117–132CrossRefGoogle Scholar
  50. 50.
    Bosman AW, Janssen HM, Meijer EW (1999) About dendrimers: structure, physical properties, and applications. Chem Rev 99(7):1665–1688CrossRefGoogle Scholar
  51. 51.
    Tomalia DA, Fréchet JMJ (2002) Discovery of dendrimers and dendritic polymers: a brief historical perspective. J Polym Sci Part A Polym Chem 40(16):2719–2728CrossRefGoogle Scholar
  52. 52.
    Shen M, Shi X (2010) Dendrimer-based organic/inorganic hybrid nanoparticles in biomedical applications. Nanoscale 2(9):1596–1610CrossRefGoogle Scholar
  53. 53.
    Tang J, Sheng Y, Hu H, Shen Y (2013) Macromolecular MRI contrast agents: structures, properties and applications. Prog Polym Sci 38(3–4):462–502CrossRefGoogle Scholar
  54. 54.
    Kobayashi H, Brechbiel MW (2005) Nano-sized MRI contrast agents with dendrimer cores. Adv Drug Deliv Rev 57(15):2271–2286CrossRefGoogle Scholar
  55. 55.
    Kobayashi H, Kawamoto S, Jo S-K, Bryant HL, Brechbiel MW, Star RA (2003) Macromolecular MRI contrast agents with small dendrimers: pharmacokinetic differences between sizes and cores. Bioconjug Chem 14(2):388–394CrossRefGoogle Scholar
  56. 56.
    Hong S, Leroueil PR, Majoros IJ, Orr BG, Baker JR Jr, Banaszak Holl MM (2007) The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform. Chem Biol 14(1):107–115CrossRefGoogle Scholar
  57. 57.
    Shukla R, Hill E, Shi X, Kim J, Muniz MC, Sun K, Baker JR (2008) Tumor microvasculature targeting with dendrimer-entrapped gold nanoparticles. Soft Matter 4(11):2160–2163CrossRefGoogle Scholar
  58. 58.
    Shi X, Wang S, Sun H, Baker JR (2007) Improved biocompatibility of surface functionalized dendrimer-entrapped gold nanoparticles. Soft Matter 3(1):71–74CrossRefGoogle Scholar
  59. 59.
    Cao Y, Liu H, Shi X (2015) Targeted CT imaging of cancer cells using PEGylated low-generation dendrimer-entrapped gold nanoparticles. J Control Release 213:e138–e139CrossRefGoogle Scholar
  60. 60.
    Zhou B, Zheng L, Peng C, Li D, Li J, Wen S, Shen M, Zhang G, Shi X (2014) Synthesis and characterization of PEGylated polyethylenimine-entrapped gold nanoparticles for blood pool and tumor CT imaging. ACS Appl Mater Interfaces 6(19):17190–17199CrossRefGoogle Scholar
  61. 61.
    Wang H, Zheng L, Peng C, Shen M, Shi X, Zhang G (2013) Folic acid-modified dendrimer-entrapped gold nanoparticles as nanoprobes for targeted CT imaging of human lung adencarcinoma. Biomaterials 34(2):470–480CrossRefGoogle Scholar
  62. 62.
    Talanov VS, Regino CAS, Kobayashi H, Bernardo M, Choyke PL, Brechbiel MW (2006) Dendrimer-based nanoprobe for dual modality magnetic resonance and fluorescence imaging. Nano Lett 6(7):1459–1463CrossRefGoogle Scholar
  63. 63.
    Kim Y, Kim SH, Tanyeri M, Katzenellenbogen JA, Schroeder CM (2013) Dendrimer probes for enhanced photostability and localization in fluorescence imaging. Biophys J 104(7):1566–1575CrossRefGoogle Scholar
  64. 64.
    Taratula O, Schumann C, Duong T, Taylor KL, Taratula O (2015) Dendrimer-encapsulated naphthalocyanine as a single agent-based theranostic nanoplatform for near-infrared fluorescence imaging and combinatorial anticancer phototherapy. Nanoscale 7(9):3888–3902CrossRefGoogle Scholar
  65. 65.
    Bryant LH Jr, Jordan EK, Bulte JWM, Herynek V, Frank JA (2002) Pharmacokinetics of a high-generation dendrimer–Gd-DOTA. Acad Radiol 9(Suppl 1):S29–S33CrossRefGoogle Scholar
  66. 66.
    Wen S, Li K, Cai H, Chen Q, Shen M, Huang Y, Peng C, Hou W, Zhu M, Zhang G, Shi X (2013) Multifunctional dendrimer-entrapped gold nanoparticles for dual mode CT/MR imaging applications. Biomaterials 34(5):1570–1580CrossRefGoogle Scholar
  67. 67.
    Nwe K, Bernardo M, Regino CAS, Williams M, Brechbiel MW (2010) Comparison of MRI properties between derivatized DTPA and DOTA gadolinium–dendrimer conjugates. Bioorg Med Chem 18(16):5925–5931CrossRefGoogle Scholar
  68. 68.
    Luo Y, Zhao L, Li X, Yang J, Guo L, Zhang G, Shen M, Zhao J, Shi X (2016) The design of a multifunctional dendrimer-based nanoplatform for targeted dual mode SPECT/MR imaging of tumors. J Mater Chem B 4(45):7220–7225CrossRefGoogle Scholar
  69. 69.
    Li X, Xiong Z, Xu X, Luo Y, Peng C, Shen M, Shi X (2016) 99mTc-labeled multifunctional low-generation dendrimer-entrapped gold nanoparticles for targeted SPECT/CT dual-mode imaging of tumors. ACS Appl Mater Interfaces 8(31):19883–19891CrossRefGoogle Scholar
  70. 70.
    Zhao L, Zhu J, Cheng Y, Xiong Z, Tang Y, Guo L, Shi X, Zhao J (2015) Chlorotoxin-conjugated multifunctional dendrimers labeled with radionuclide 131I for single photon emission computed tomography imaging and radiotherapy of gliomas. ACS Appl Mater Interfaces 7(35):19798–19808CrossRefGoogle Scholar
  71. 71.
    Seo JW, Baek H, Mahakian LM, Kusunose J, Hamzah J, Ruoslahti E, Ferrara KW (2014) 64Cu-labeled lyp-1-dendrimer for PET-CT imaging of atherosclerotic plaque. Bioconjug Chem 25(2):231–239CrossRefGoogle Scholar
  72. 72.
    Ghai A, Singh B, Panwar Hazari P, Schultz MK, Parmar A, Kumar P, Sharma S, Dhawan D, Kumar Mishra A (2015) Radiolabeling optimization and characterization of 68Ga labeled DOTA–polyamido-amine dendrimer conjugate – animal biodistribution and PET imaging results. Appl Radiat Isot 105:40–46CrossRefGoogle Scholar
  73. 73.
    Bulte JWM, Douglas T, Witwer B, Zhang S-C, Strable E, Lewis BK, Zywicke H, Miller B, van Gelderen P, Moskowitz BM, Duncan ID, Frank JA (2001) Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 19(12):1141–1147CrossRefGoogle Scholar
  74. 74.
    Strable E, Bulte JWM, Moskowitz B, Vivekanandan K, Allen M, Douglas T (2001) Synthesis and characterization of soluble iron oxide–dendrimer composites. Chem Mater 13(6):2201–2209CrossRefGoogle Scholar
  75. 75.
    Shi X, Thomas TP, Myc LA, Kotlyar A, Baker JJR (2007) Synthesis, characterization, and intracellular uptake of carboxyl-terminated poly(amidoamine) dendrimer-stabilized iron oxide nanoparticles. Phys Chem Chem Phys 9(42):5712–5720CrossRefGoogle Scholar
  76. 76.
    Zhou B, Xiong Z, Zhu J, Shen M, Tang G, Peng C, Shi X (2016) PEGylated polyethylenimine-entrapped gold nanoparticles loaded with gadolinium for dual-mode CT/MR imaging applications. Nanomedicine 11(13):1639–1652CrossRefGoogle Scholar
  77. 77.
    Chen Q, Wang H, Liu H, Wen S, Peng C, Shen M, Zhang G, Shi X (2015) Multifunctional dendrimer-entrapped gold nanoparticles modified with RGD peptide for targeted computed tomography/magnetic resonance dual-modal imaging of tumors. Anal Chem 87(7):3949–3956CrossRefGoogle Scholar
  78. 78.
    Shaw LJ, Iskandrian AE (2004) Prognostic value of gated myocardial perfusion SPECT. J Nucl Cardiol 11(2):171–185CrossRefGoogle Scholar
  79. 79.
    Gnanasegaran G, Ballinger JR (2014) Molecular imaging agents for SPECT (and SPECT/CT). Eur J Nucl Med Mol Imaging 41(1):26–35CrossRefGoogle Scholar
  80. 80.
    Cutler CS, Hennkens HM, Sisay N, Huclier-Markai S, Jurisson SS (2013) Radiometals for combined imaging and therapy. Chem Rev 113(2):858–883CrossRefGoogle Scholar
  81. 81.
    Madsen MT (2007) Recent advances in SPECT imaging. J Nucl Med 48(4):661–673CrossRefGoogle Scholar
  82. 82.
    Eckelman WC (2009) Unparalleled contribution of technetium-99m to medicine over 5 decades. J Am Coll Cardiol Img 2(3):364–368CrossRefGoogle Scholar
  83. 83.
    Khalil MM, Tremoleda JL, Bayomy TB, Gsell W (2011) Molecular SPECT imaging: an overview. Int J Mol Imaging 2011:796025CrossRefGoogle Scholar
  84. 84.
    Niendorf HP, Dinger JC, Haustein J, Cornelius I, Alhassan A, Clauß W (1991) Tolerance data of Gd-DTPA: a review. Eur J Radiol 13(1):15–20CrossRefGoogle Scholar
  85. 85.
    Weinmann HJ, Brasch RC, Press WR, Wesbey GE (1984) Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent. Am J Roentgenol 142(3):619–624CrossRefGoogle Scholar
  86. 86.
    Brix G, Semmler W, Port R, Schad LR, Layer G, Lorenz WJ (1991) Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr 15(4):621–628CrossRefGoogle Scholar
  87. 87.
    Lorberboym M, Lampl Y, Sadeh M (2003) Correlation of 99mTc-DTPA SPECT of the blood–brain barrier with neurologic outcome after acute stroke. J Nucl Med 44(12):1898–1904Google Scholar
  88. 88.
    McLarty K, Cornelissen B, Cai Z, Scollard DA, Costantini DL, Done SJ, Reilly RM (2009) Micro-SPECT/CT with 111In-DTPA-pertuzumab sensitively detects trastuzumab-mediated her2 downregulation and tumor response in athymic mice bearing MDA-MB-361 human breast cancer xenografts. J Nucl Med 50(8):1340–1348CrossRefGoogle Scholar
  89. 89.
    Bar-Shalom R, Yefremov N, Guralnik L, Keidar Z, Engel A, Nitecki S, Israel O (2006) SPECT/CT using 67Ga and 111In-labeled leukocyte scintigraphy for diagnosis of infection. J Nucl Med 47(4):587–594Google Scholar
  90. 90.
    Zhang Y, Sun Y, Xu X, Zhu H, Huang L, Zhang X, Qi Y, Shen Y-M (2010) Radiosynthesis and micro-SPECT imaging of 99mTc-dendrimer poly(amido)-amine folic acid conjugate. Bioorg Med Chem Lett 20(3):927–931CrossRefGoogle Scholar
  91. 91.
    Zhang Y, Sun Y, Xu X, Zhang X, Zhu H, Huang L, Qi Y, Shen Y-M (2010) Synthesis, biodistribution, and microsingle photon emission computed tomography (SPECT) imaging study of technetium-99m labeled pegylated dendrimer poly(amidoamine) (PAMAM)−folic acid conjugates. J Med Chem 53(8):3262–3272CrossRefGoogle Scholar
  92. 92.
    Xu X, Zhang Y, Wang X, Guo X, Zhang X, Qi Y, Shen Y-M (2011) Radiosynthesis, biodistribution and micro-SPECT imaging study of dendrimer–avidin conjugate. Bioorg Med Chem 19(5):1643–1648CrossRefGoogle Scholar
  93. 93.
    Mirzaii M, Seyyedi S, Sadeghi M, Gholamzadeh Z (2010) Cadmium electrodeposition on copper substrate for cyclotron production of 111In radionuclide. J Radioanal Nucl Chem 284(2):333–339CrossRefGoogle Scholar
  94. 94.
    Mamede M, Saga T, Ishimori T, Higashi T, Sato N, Kobayashi H, Brechbiel MW, Konishi J (2004) Hepatocyte targeting of 111In-labeled oligo-DNA with avidin or avidin–dendrimer complex. J Control Release 95(1):133–141CrossRefGoogle Scholar
  95. 95.
    Bindslev L, Haack-Sørensen M, Bisgaard K, Kragh L, Mortensen S, Hesse B, Kjær A, Kastrup J (2006) Labelling of human mesenchymal stem cells with indium-111 for SPECT imaging: effect on cell proliferation and differentiation. Eur J Nucl Med Mol Imaging 33(10):1171–1177CrossRefGoogle Scholar
  96. 96.
    Wong KK, Cahill JM, Frey KA, Avram AM (2010) Incremental value of 111-in pentetreotide SPECT/CT fusion imaging of neuroendocrine tumors. Acad Radiol 17(3):291–297CrossRefGoogle Scholar
  97. 97.
    Castaldi P, Rufini V, Treglia G, Bruno I, Perotti G, Stifano G, Barbaro B, Giordano A (2008) Impact of 111In-DTPA-octreotide SPECT/CT fusion images in the management of neuroendocrine tumours. Radiol Med 113(7):1056–1067CrossRefGoogle Scholar
  98. 98.
    Kojima C, Niki Y, Ogawa M, Magata Y (2014) Prolonged local retention of subcutaneously injected polymers monitored by noninvasive SPECT imaging. Int J Pharm 476(1–2):164–168CrossRefGoogle Scholar
  99. 99.
    Keshtgar MRS, Ell PJ (1999) Sentinel lymph node detection and imaging. Eur J Nucl Med 26(1):57–67CrossRefGoogle Scholar
  100. 100.
    Xie Y, Bagby TR, Cohen MS, Forrest ML (2009) Drug delivery to the lymphatic system: importance in future cancer diagnosis and therapies. Expert Opin Drug Deliv 6(8):785–792CrossRefGoogle Scholar
  101. 101.
    Ryan GM, Kaminskas LM, Porter CJH (2014) Nano-chemotherapeutics: maximising lymphatic drug exposure to improve the treatment of lymph-metastatic cancers. J Control Release 193:241–256CrossRefGoogle Scholar
  102. 102.
    Koyama Y, Talanov VS, Bernardo M, Hama Y, Regino CAS, Brechbiel MW, Choyke PL, Kobayashi H (2007) A dendrimer-based nanosized contrast agent dual-labeled for magnetic resonance and optical fluorescence imaging to localize the sentinel lymph node in mice. J Magn Reson Imaging 25(4):866–871CrossRefGoogle Scholar
  103. 103.
    Jain R, Dandekar P, Patravale V (2009) Diagnostic nanocarriers for sentinel lymph node imaging. J Control Release 138(2):90–102CrossRefGoogle Scholar
  104. 104.
    Sano K, Iwamiya Y, Kurosaki T, Ogawa M, Magata Y, Sasaki H, Ohshima T, Maeda M, Mukai T (2014) Radiolabeled γ-polyglutamic acid complex as a nano-platform for sentinel lymph node imaging. J Control Release 194:310–315CrossRefGoogle Scholar
  105. 105.
    Niki Y, Ogawa M, Makiura R, Magata Y, Kojima C (2015) Optimization of dendrimer structure for sentinel lymph node imaging: effects of generation and terminal group. Nanomedicine 11(8):2119–2127CrossRefGoogle Scholar
  106. 106.
    Willi AK (2006) X-ray computed tomography. Phys Med Biol 51(13):R29CrossRefGoogle Scholar
  107. 107.
    Mattrey RF, Aguirre DA (2003) Advances in contrast media research. Acad Radiol 10(12):1450–1460CrossRefGoogle Scholar
  108. 108.
    Hallouard F, Anton N, Choquet P, Constantinesco A, Vandamme T (2010) Iodinated blood pool contrast media for preclinical X-ray imaging applications – a review. Biomaterials 31(24):6249–6268CrossRefGoogle Scholar
  109. 109.
    Liu H, Wang H, Xu Y, Shen M, Zhao J, Zhang G, Shi X (2014) Synthesis of PEGylated low generation dendrimer-entrapped gold nanoparticles for CT imaging applications. Nanoscale 6(9):4521–4526CrossRefGoogle Scholar
  110. 110.
    Wang H, Zheng L, Guo R, Peng C, Shen M, Shi X, Zhang G (2012) Dendrimer-entrapped gold nanoparticles as potential CT contrast agents for blood pool imaging. Nanoscale Res Lett 7(1):190CrossRefGoogle Scholar
  111. 111.
    Peng C, Qin J, Zhou B, Chen Q, Shen M, Zhu M, Lu X, Shi X (2013) Targeted tumor CT imaging using folic acid-modified PEGylated dendrimer-entrapped gold nanoparticles. Polym Chem 4(16):4412–4424CrossRefGoogle Scholar
  112. 112.
    Criscione JM, Dobrucki LW, Zhuang ZW, Papademetris X, Simons M, Sinusas AJ, Fahmy TM (2011) Development and application of a multimodal contrast agent for SPECT/CT hybrid imaging. Bioconjug Chem 22(9):1784–1792CrossRefGoogle Scholar
  113. 113.
    Xu C, Tung GA, Sun S (2008) Size and concentration effect of gold nanoparticles on X-ray attenuation as measured on computed tomography. Chem Mater 20(13):4167–4169CrossRefGoogle Scholar
  114. 114.
    Shi X, Lee I, Baker JR (2008) Acetylation of dendrimer-entrapped gold and silver nanoparticles. J Mater Chem 18(5):586–593CrossRefGoogle Scholar
  115. 115.
    Guo R, Wang H, Peng C, Shen M, Pan M, Cao X, Zhang G, Shi X (2010) X-ray attenuation property of dendrimer-entrapped gold nanoparticles. J Phys Chem C 114(1):50–56CrossRefGoogle Scholar
  116. 116.
    Jordan LC, McKinstry RC, Kraut MA, Ball WS, Vendt BA, Casella JF, DeBaun MR, Strouse JJ (2010) Incidental findings on brain magnetic resonance imaging of children with sickle cell disease. Pediatrics 126(1):53CrossRefGoogle Scholar
  117. 117.
    Beets-Tan RGH, Beets GL (2004) Rectal cancer: review with emphasis on MR imaging. Radiology 232(2):335–346CrossRefGoogle Scholar
  118. 118.
    Raymond KN, Pierre VC (2005) Next generation, high relaxivity gadolinium MRI agents. Bioconjug Chem 16(1):3–8CrossRefGoogle Scholar
  119. 119.
    Yang C-T, Chuang K-H (2012) Gd(iii) chelates for MRI contrast agents: from high relaxivity to “smart”, from blood pool to blood-brain barrier permeable. Med Chem Commun 3(5):552–565CrossRefGoogle Scholar
  120. 120.
    Cheng C-Y, Ou K-L, Huang W-T, Chen J-K, Chang J-Y, Yang C-H (2013) Gadolinium-based CuInS2/ZnS nanoprobe for dual-modality magnetic resonance/optical imaging. ACS Appl Mater Interfaces 5(10):4389–4400CrossRefGoogle Scholar
  121. 121.
    Langereis S, de Lussanet QG, van Genderen MHP, Meijer EW, Beets-Tan RGH, Griffioen AW, van Engelshoven JMA, Backes WH (2006) Evaluation of Gd(III)DTPA-terminated poly(propylene imine) dendrimers as contrast agents for MR imaging. NMR Biomed 19(1):133–141CrossRefGoogle Scholar
  122. 122.
    Cheng Z, Thorek DLJ, Tsourkas A (2010) Gadolinium-conjugated dendrimer nanoclusters as a tumor-targeted T1 magnetic resonance imaging contrast agent. Angew Chem Int Ed Engl 49(2):346–350CrossRefGoogle Scholar
  123. 123.
    Rahmania H, Mutalib A, Ramli M, Levita J (2015) Synthesis and stability test of radiogadolinium(III)-DOTA-PAMAM G3.0-trastuzumab as SPECT-MRI molecular imaging agent for diagnosis of HER-2 positive breast cancer. J Radiat Res Appl Sci 8(1):91–99CrossRefGoogle Scholar
  124. 124.
    Lee WI, Bae Y, Bard AJ (2004) Strong blue photoluminescence and ECL from OH-terminated PAMAM dendrimers in the absence of gold nanoparticles. J Am Chem Soc 126(27):8358–8359CrossRefGoogle Scholar
  125. 125.
    Wang D, Imae T (2004) Fluorescence emission from dendrimers and its pH dependence. J Am Chem Soc 126(41):13204–13205CrossRefGoogle Scholar
  126. 126.
    Tsuchimochi M, Hayama K, Toyama M, Sasagawa I, Tsubokawa N (2013) Dual-modality imaging with 99mTc and fluorescent indocyanine green using surface-modified silica nanoparticles for biopsy of the sentinel lymph node: an animal study. EJNMMI Res 3(1):33CrossRefGoogle Scholar
  127. 127.
    Xie J, Lee S, Chen X (2010) Nanoparticle-based theranostic agents. Adv Drug Deliv Rev 62(11):1064–1079CrossRefGoogle Scholar
  128. 128.
    Ma Y, Mou Q, Wang D, Zhu X, Yan D (2016) Dendritic polymers for theranostics. Theranostics 6(7):930–947CrossRefGoogle Scholar
  129. 129.
    Zhu J, Zhao L, Cheng Y, Xiong Z, Tang Y, Shen M, Zhao J, Shi X (2015) Radionuclide 131I-labeled multifunctional dendrimers for targeted SPECT imaging and radiotherapy of tumors. Nanoscale 7(43):18169–18178CrossRefGoogle Scholar
  130. 130.
    Cheng Y, Zhu J, Zhao L, Xiong Z, Tang Y, Liu C, Guo L, Qiao W, Shi X, Zhao J (2016) 131I-labeled multifunctional dendrimers modified with BmK CT for targeted SPECT imaging and radiotherapy of gliomas. Nanomedicine 11(10):1253–1266CrossRefGoogle Scholar
  131. 131.
    Vugmeyster Y, DeFranco D, Szklut P, Wang Q, Xu X (2010) Biodistribution of [125I]-labeled therapeutic proteins: application in protein drug development beyond oncology. J Pharm Sci 99(2):1028–1045CrossRefGoogle Scholar
  132. 132.
    Shao X, Zhang H, Rajian JR, Chamberland DL, Sherman PS, Quesada CA, Koch AE, Kotov NA, Wang X (2011) 125I-labeled gold nanorods for targeted imaging of inflammation. ACS Nano 5(11):8967–8973CrossRefGoogle Scholar
  133. 133.
    Merkel OM, Mintzer MA, Sitterberg J, Bakowsky U, Simanek EE, Kissel T (2009) Triazine dendrimers as nonviral gene delivery systems: effects of molecular structure on biological activity. Bioconjug Chem 20(9):1799–1806CrossRefGoogle Scholar
  134. 134.
    Mintzer MA, Merkel OM, Kissel T, Simanek EE (2009) Polycationic triazine-based dendrimers: effect of peripheral groups on transfection efficiency. New J Chem 33(9):1918–1925CrossRefGoogle Scholar
  135. 135.
    Merkel OM, Zheng M, Mintzer MA, Pavan GM, Librizzi D, Maly M, Höffken H, Danani A, Simanek EE, Kissel T (2011) Molecular modeling and in vivo imaging can identify successful flexible triazine dendrimer-based siRNA delivery systems. J Control Release 153(1):23–33CrossRefGoogle Scholar
  136. 136.
    Lee C, Lo S-T, Lim J, da Costa VCP, Ramezani S, Öz OK, Pavan GM, Annunziata O, Sun X, Simanek EE (2013) Design, synthesis and biological assessment of a triazine dendrimer with approximately 16 paclitaxel groups and 8 PEG groups. Mol Pharm 10(12):4452–4461CrossRefGoogle Scholar
  137. 137.
    Xiao W, Luo J, Jain T, Riggs JW, Tseng HP, Henderson PT, Cherry SR, Rowland D, Lam KS (2012) Biodistribution and pharmacokinetics of a telodendrimer micellar paclitaxel nanoformulation in a mouse xenograft model of ovarian cancer. Int J Nanomedicine 7(9):1587–1597CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Nuclear MedicineShanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghaiPeople’s Republic of China
  2. 2.College of Chemistry, Chemical Engineering and BiotechnologyDonghua UniversityShanghaiPeople’s Republic of China
  3. 3.CQM-Centro de Química da MadeiraUniversidade da MadeiraFunchalPortugal

Personalised recommendations