Advertisement

Photoacoustic Imaging Tools for Nanomedicine

  • Jeesu Kim
  • Chulhong KimEmail author
Chapter

Abstract

Photoacoustic imaging is a biomedical imaging method that has grown explosively over the last decades. Functional molecular and morphological information of biological molecules, cells, tissues, and organs can be obtained through photoacoustic images. In addition to endogenous light absorbing chromophores, various exogenous contrast agents have been developed to obtain molecular photoacoustic images. Thus, this technology has been soon popular in nanomedicine. This chapter introduces various types of photoacoustic imaging systems and recent trends in photoacoustic image-guided nanomedicine.

References

  1. 1.
    Balas C (2009) Review of biomedical optical imaging – a powerful, non-invasive, non-ionizing technology for improving in vivo diagnosis. Meas Sci Technol 20(10):104020CrossRefGoogle Scholar
  2. 2.
    Kim C, Favazza C, Wang LV (2010) In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths. Chem Rev 110(5):2756–2782CrossRefGoogle Scholar
  3. 3.
    Beard P (2011) Biomedical photoacoustic imaging. Interface Focus 1:602.  https://doi.org/10.1098/rsfs.2011.0028CrossRefGoogle Scholar
  4. 4.
    Wang LV, Hu S (2012) Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335(6075):1458–1462CrossRefGoogle Scholar
  5. 5.
    Kim J, Park S, Lee C, Kim JY, Kim C (2015) Organic nanostructures for photoacoustic imaging. ChemNanoMat 2:156CrossRefGoogle Scholar
  6. 6.
    Yao J, Maslov KI, Shi Y, Taber LA, Wang LV (2010) Vivo photoacoustic imaging of transverse blood flow by using Doppler broadening of bandwidth. Opt Lett 35(9):1419–1421CrossRefGoogle Scholar
  7. 7.
    Pramanik M, Wang LV (2009) Thermoacoustic and photoacoustic sensing of temperature. J Biomed Opt 14(5):054024–054027CrossRefGoogle Scholar
  8. 8.
    Lee C, Jeon M, Jeon MY, Kim J, Kim C (2014) In vitro photoacoustic measurement of hemoglobin oxygen saturation using a single pulsed broadband supercontinuum laser source. Appl Opt 53(18):3884–3889CrossRefGoogle Scholar
  9. 9.
    Kim C, Erpelding TN, Jankovic L, Wang LV (2011) Performance benchmarks of an array-based hand-held photoacoustic probe adapted from a clinical ultrasound system for non-invasive sentinel lymph node imaging. Philos Trans R Soc A Math Phys Eng Sci 369(1955):4644–4650CrossRefGoogle Scholar
  10. 10.
    Kim C, Erpelding TN, Jankovic L, Pashley MD, Wang LV (2010) Deeply penetrating in vivo photoacoustic imaging using a clinical ultrasound array system. Biomed Opt Express 1(1):278–284CrossRefGoogle Scholar
  11. 11.
    Kim J, Park S, Jung Y, Chang S, Park J, Zhang Y, Lovell JF, Kim C (2016) Programmable real-time clinical photoacoustic and ultrasound imaging system. Sci Rep 6:35137CrossRefGoogle Scholar
  12. 12.
    Heijblom M, Steenbergen W, Manohar S (2015) Clinical photoacoustic breast imaging: the Twente experience. IEEE Pulse 6(3):42–46CrossRefGoogle Scholar
  13. 13.
    Fakhrejahani E, Torii M, Kitai T, Kanao S, Asao Y, Hashizume Y, Mikami Y, Yamaga I, Kataoka M, Sugie T (2015) Clinical report on the first prototype of a photoacoustic tomography system with dual illumination for breast cancer imaging. PLoS One 10(10):e0139113CrossRefGoogle Scholar
  14. 14.
    Smith AM, Mancini MC, Nie S (2009) Second window for in vivo imaging. Nat Nanotechnol 4(11):710CrossRefGoogle Scholar
  15. 15.
    Kim C, Song KH, Gao F, Wang LV (2010) Sentinel lymph nodes and lymphatic vessels: noninvasive dual-modality in vivo mapping by using indocyanine green in rats – volumetric spectroscopic photoacoustic imaging and planar fluorescence imaging 1. Radiology 255(2):442–450CrossRefGoogle Scholar
  16. 16.
    Wang X, Ku G, Wegiel MA, Bornhop DJ, Stoica G, Wang LV (2004) Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent. Opt Lett 29(7):730–732CrossRefGoogle Scholar
  17. 17.
    Ku G, Wang LV (2005) Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent. Opt Lett 30(5):507–509CrossRefGoogle Scholar
  18. 18.
    Kim C, Cho EC, Chen J, Song KH, Au L, Favazza C, Zhang Q, Cobley CM, Gao F, Xia Y (2010) In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages. ACS Nano 4(8):4559–4564CrossRefGoogle Scholar
  19. 19.
    Srivatsan A, Jenkins SV, Jeon M, Wu Z, Kim C, Chen J, Pandey RK (2014) Gold nanocage-photosensitizer conjugates for dual-modal image-guided enhanced photodynamic therapy. Theranostics 4(2):163–174CrossRefGoogle Scholar
  20. 20.
    Li W, Cai X, Kim C, Sun G, Zhang Y, Deng R, Yang M, Chen J, Achilefu S, Wang LV (2011) Gold nanocages covered with thermally-responsive polymers for controlled release by high-intensity focused ultrasound. Nanoscale 3(4):1724–1730CrossRefGoogle Scholar
  21. 21.
    Jeon M, Jenkins S, Oh J, Kim J, Peterson T, Chen J, Kim C (2014) Nonionizing photoacoustic cystography with near-infrared absorbing gold nanostructures as optical-opaque tracers. Nanomedicine 9(9):1377–1388CrossRefGoogle Scholar
  22. 22.
    De La Zerda A, Zavaleta C, Keren S, Vaithilingam S, Bodapati S, Liu Z, Levi J, Smith BR, Ma T-J, Oralkan O (2008) Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat Nanotechnol 3(9):557–562CrossRefGoogle Scholar
  23. 23.
    Shashkov EV, Everts M, Galanzha EI, Zharov VP (2008) Quantum dots as multimodal photoacoustic and photothermal contrast agents. Nano Lett 8(11):3953–3958CrossRefGoogle Scholar
  24. 24.
    Zerda Adl, Liu Z, Bodapati S, Teed R, Vaithilingam S, Khuri-Yakub BT, Chen X, Dai H, Gambhir SS (2010) Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice. Nano Lett 10(6):2168–2172CrossRefGoogle Scholar
  25. 25.
    Maslov K, Stoica G, Wang LV (2005) In vivo dark-field reflection-mode photoacoustic microscopy. Opt Lett 30(6):625–627CrossRefGoogle Scholar
  26. 26.
    Jeon M, Kim J, Kim C (2014) Multiplane spectroscopic whole-body photoacoustic imaging of small animals in vivo. Med Biol Eng Comput 54(2):283–294 https://link.springer.com/article/10.1007%2Fs11517-014-1182-6CrossRefGoogle Scholar
  27. 27.
    Hu S, Maslov K, Wang LV (2011) Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed. Opt Lett 36(7):1134–1136CrossRefGoogle Scholar
  28. 28.
    Maslov K, Zhang HF, Hu S, Wang LV (2008) Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries. Opt Lett 33:929CrossRefGoogle Scholar
  29. 29.
    Li C, Aguirre A, Gamelin J, Maurudis A, Zhu Q, Wang LV (2010) Real-time photoacoustic tomography of cortical hemodynamics in small animals. J Biomed Opt 15(1):010509CrossRefGoogle Scholar
  30. 30.
    Brecht H-P, Su R, Fronheiser M, Ermilov SA, Conjusteau A, Oraevsky AA (2009) Whole-body three-dimensional optoacoustic tomography system for small animals. J Biomed Opt 14(6):064007–064008CrossRefGoogle Scholar
  31. 31.
    Xia J, Chatni MR, Maslov K, Guo Z, Wang K, Anastasio M, Wang LV (2012) Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo. J Biomed Opt 17(5):0505061–0505063CrossRefGoogle Scholar
  32. 32.
    Luís Deán-Ben X, Razansky D (2014) Adding fifth dimension to optoacoustic imaging: volumetric time-resolved spectrally enriched tomography. Light: Sci Appl 3(1):e137CrossRefGoogle Scholar
  33. 33.
    Razansky D, Buehler A, Ntziachristos V (2011) Volumetric real-time multispectral optoacoustic tomography of biomarkers. Nat Protoc 6(8):1121–1129CrossRefGoogle Scholar
  34. 34.
    Kruger RA, Lam RB, Reinecke DR, Del Rio SP, Doyle RP (2010) Photoacoustic angiography of the breast. Med Phys 37(11):6096–6100CrossRefGoogle Scholar
  35. 35.
    Needles A, Heinmiller A, Sun J, Theodoropoulos C, Bates D, Hirson D, Yin M, Foster FS (2013) Development and initial application of a fully integrated photoacoustic micro-ultrasound system. IEEE Trans Ultrason Ferroelectr Freq Control 60(5):888–897CrossRefGoogle Scholar
  36. 36.
    Zafar H, Breathnach A, Subhash HM, Leahy MJ (2015) Linear-array-based photoacoustic imaging of human microcirculation with a range of high frequency transducer probes. J Biomed Opt 20(5):051021CrossRefGoogle Scholar
  37. 37.
    Kim JY, Lee C, Park K, Lim G, Kim C (2015) Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner. Sci Rep 5:7932CrossRefGoogle Scholar
  38. 38.
    Yao J, Wang L, Yang J-M, Maslov KI, Wong TT, Li L, Huang C-H, Zou J, Wang LV (2015) High-speed label-free functional photoacoustic microscopy of mouse brain in action. Nat Methods 12(5):407–410CrossRefGoogle Scholar
  39. 39.
    Gamelin J, Maurudis A, Aguirre A, Huang F, Guo P, Wang LV, Zhu Q (2009) A real-time photoacoustic tomography system for small animals. Opt Express 17(13):10489–10498CrossRefGoogle Scholar
  40. 40.
    Lin L, Xia J, Wong TT, Li L, Wang LV (2015) In vivo deep brain imaging of rats using oral-cavity illuminated photoacoustic computed tomography. J Biomed Opt 20(1):016019CrossRefGoogle Scholar
  41. 41.
    Tsyboulski DA, Liopo AV, Su R, Ermilov SA, Bachilo SM, Weisman RB, Oraevsky AA (2014) Enabling in vivo measurements of nanoparticle concentrations with three-dimensional optoacoustic tomography. J Biophotonics 7(8):581–588CrossRefGoogle Scholar
  42. 42.
    Ermilov S, Su R, Conjusteau A, Anis F, Nadvoretskiy V, Anastasio M, Oraevsky A (2016) Three-dimensional optoacoustic and laser-induced ultrasound tomography system for preclinical research in mice: design and phantom validation. Ultrason Imaging 38(1):77–95CrossRefGoogle Scholar
  43. 43.
    Dima A, Burton NC, Ntziachristos V (2014) Multispectral optoacoustic tomography at 64, 128, and 256 channels. J Biomed Opt 19(3):036021CrossRefGoogle Scholar
  44. 44.
    Taruttis A, Morscher S, Burton NC, Razansky D, Ntziachristos V (2012) Fast multispectral optoacoustic tomography (MSOT) for dynamic imaging of pharmacokinetics and biodistribution in multiple organs. PLoS One 7(1):e30491CrossRefGoogle Scholar
  45. 45.
    Ma R, Taruttis A, Ntziachristos V, Razansky D (2009) Multispectral optoacoustic tomography (MSOT) scanner for whole-body small animal imaging. Opt Express 17(24):21414–21426CrossRefGoogle Scholar
  46. 46.
    Taruttis A, Herzog E, Razansky D, Ntziachristos V (2010) Real-time imaging of cardiovascular dynamics and circulating gold nanorods with multispectral optoacoustic tomography. Opt Express 18(19):19592–19602CrossRefGoogle Scholar
  47. 47.
    Kruger RA, Kuzmiak CM, Lam RB, Reinecke DR, Del Rio SP, Steed D (2013) Dedicated 3D photoacoustic breast imaging. Med Phys 40(11):113301CrossRefGoogle Scholar
  48. 48.
    Manohar S, Kharine A, van Hespen JC, Steenbergen W, van Leeuwen TG (2005) The Twente Photoacoustic Mammoscope: system overview and performance. Phys Med Biol 50(11):2543CrossRefGoogle Scholar
  49. 49.
    Asao Y, Hashizume Y, Suita T, Nagae K-i, Fukutani K, Sudo Y, Matsushita T, Kobayashi S, Tokiwa M, Yamaga I (2016) Photoacoustic mammography capable of simultaneously acquiring photoacoustic and ultrasound images. J Biomed Opt 21(11):116009CrossRefGoogle Scholar
  50. 50.
    Fehm TF, Deán-Ben XL, Ford SJ, Razansky D (2016) In vivo whole-body optoacoustic scanner with real-time volumetric imaging capacity. Optica 3(11):1153–1159CrossRefGoogle Scholar
  51. 51.
    Erpelding TN, Kim C, Pramanik M, Jankovic L, Maslov K, Guo Z, Margenthaler JA, Pashley MD, Wang LV (2010) Sentinel lymph nodes in the rat: noninvasive photoacoustic and US imaging with a clinical US system. Radiology 256(1):102–110CrossRefGoogle Scholar
  52. 52.
    Sivasubramanian K, Pramanik M (2016) High frame rate photoacoustic imaging at 7000 frames per second using clinical ultrasound system. Biomed Opt Express 7(2):312–323CrossRefGoogle Scholar
  53. 53.
    Wang D, Wang Y, Wang W, Luo D, Chitgupi U, Geng J, Zhou Y, Wang L, Lovell JF, Xia J (2017) Deep tissue photoacoustic computed tomography with a fast and compact laser system. Biomed Opt Express 8(1):112–123CrossRefGoogle Scholar
  54. 54.
    Sonavane G, Tomoda K, Makino K (2008) Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf B: Biointerfaces 66(2):274–280CrossRefGoogle Scholar
  55. 55.
    Lindner JR (2004) Microbubbles in medical imaging: current applications and future directions. Nat Rev Drug Discov 3(6):527–533CrossRefGoogle Scholar
  56. 56.
    Jeon M, Song W, Huynh E, Kim J, Kim J, Helfield BL, Leung BY, Goertz DE, Zheng G, Oh J (2014) Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging. J Biomed Opt 19(1):016005CrossRefGoogle Scholar
  57. 57.
    Huynh E, Lovell JF, Helfield BL, Jeon M, Kim C, Goertz DE, Wilson BC, Zheng G (2012) Porphyrin shell microbubbles with intrinsic ultrasound and photoacoustic properties. J Am Chem Soc 134(40):16464–16467CrossRefGoogle Scholar
  58. 58.
    Huynh E, Jin CS, Wilson BC, Zheng G (2014) Aggregate enhanced trimodal porphyrin shell microbubbles for ultrasound, photoacoustic, and fluorescence imaging. Bioconjug Chem 25(4):796–801CrossRefGoogle Scholar
  59. 59.
    Wilson K, Homan K, Emelianov S (2012) Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging. Nat Commun 3:618CrossRefGoogle Scholar
  60. 60.
    Hannah A, Luke G, Wilson K, Homan K, Emelianov S (2013) Indocyanine green-loaded photoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging. ACS Nano 8(1):250–259CrossRefGoogle Scholar
  61. 61.
    Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760CrossRefGoogle Scholar
  62. 62.
    Malam Y, Loizidou M, Seifalian AM (2009) Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 30(11):592–599CrossRefGoogle Scholar
  63. 63.
    Beziere N, Lozano N, Nunes A, Salichs J, Queiros D, Kostarelos K, Ntziachristos V (2015) Dynamic imaging of PEGylated indocyanine green (ICG) liposomes within the tumor microenvironment using multi-spectral optoacoustic tomography (MSOT). Biomaterials 37:415–424CrossRefGoogle Scholar
  64. 64.
    Lozano N, Al-Ahmady ZS, Beziere NS, Ntziachristos V, Kostarelos K (2015) Monoclonal antibody-targeted PEGylated liposome-ICG encapsulating doxorubicin as a potential theranostic agent. Int J Pharm 482(1):2–10CrossRefGoogle Scholar
  65. 65.
    Lovell JF, Jin CS, Huynh E, Jin H, Kim C, Rubinstein JL, Chan WC, Cao W, Wang LV, Zheng G (2011) Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat Mater 10(4):324–332CrossRefGoogle Scholar
  66. 66.
    Rieffel J, Chen F, Kim J, Chen G, Shao W, Shao S, Chitgupi U, Hernandez R, Graves SA, Nickles RJ (2015) Hexamodal imaging with porphyrin-phospholipid-coated upconversion nanoparticles. Adv Mater 27:1785CrossRefGoogle Scholar
  67. 67.
    Liu TW, MacDonald TD, Shi J, Wilson BC, Zheng G (2012) Intrinsically copper-64-labeled organic nanoparticles as radiotracers. Angew Chem Int Ed 51(52):13128–13131CrossRefGoogle Scholar
  68. 68.
    Sreejith S, Joseph J, Lin M, Menon NV, Borah P, Ng HJ, Loong YX, Kang Y, Yu SW-K, Zhao Y (2015) Near-infrared squaraine dye encapsulated micelles for in vivo fluorescence and photoacoustic bimodal imaging. ACS Nano 9(6):5695–5704CrossRefGoogle Scholar
  69. 69.
    Zhang D, Wu M, Zeng Y, Liao N, Cai Z, Liu G, Liu X, Liu J (2016) Lipid micelles packaged with semiconducting polymer dots as simultaneous MRI/photoacoustic imaging and photodynamic/photothermal dual-modal therapeutic agents for liver cancer. J Mater Chem B 4(4):589–599CrossRefGoogle Scholar
  70. 70.
    Pu K, Shuhendler AJ, Jokerst JV, Mei J, Gambhir SS, Bao Z, Rao J (2014) Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat Nanotechnol 9:233CrossRefGoogle Scholar
  71. 71.
    Pu K, Mei J, Jokerst JV, Hong G, Antaris AL, Chattopadhyay N, Shuhendler AJ, Kurosawa T, Zhou Y, Gambhir SS (2015) Diketopyrrolopyrrole-based semiconducting polymer nanoparticles for in vivo photoacoustic imaging. Adv Mater 27(35):5184–5190CrossRefGoogle Scholar
  72. 72.
    Liu J, Geng J, Liao L-D, Thakor N, Gao X, Liu B (2014) Conjugated polymer nanoparticles for photoacoustic vascular imaging. Polym Chem 5(8):2854–2862CrossRefGoogle Scholar
  73. 73.
    Kang B, Yu D, Dai Y, Chang S, Chen D, Ding Y (2009) Cancer-cell targeting and photoacoustic therapy using carbon nanotubes as “bomb” agents. Small 5(11):1292–1301CrossRefGoogle Scholar
  74. 74.
    Zha Z, Deng Z, Li Y, Li C, Wang J, Wang S, Qu E, Dai Z (2013) Biocompatible polypyrrole nanoparticles as a novel organic photoacoustic contrast agent for deep tissue imaging. Nanoscale 5(10):4462–4467CrossRefGoogle Scholar
  75. 75.
    Hong JY, Yoon H, Jang J (2010) Kinetic study of the formation of polypyrrole nanoparticles in water-soluble polymer/metal cation systems: a light-scattering analysis. Small 6(5):679–686CrossRefGoogle Scholar
  76. 76.
    Zha Z, Yue X, Ren Q, Dai Z (2013) Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells. Adv Mater 25(5):777–782CrossRefGoogle Scholar
  77. 77.
    Zhang Y, Jeon M, Rich LJ, Hong H, Geng J, Zhang Y, Shi S, Barnhart TE, Alexandridis P, Huizinga JD (2014) Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines. Nat Nanotechnol 9(8):631–638CrossRefGoogle Scholar
  78. 78.
    Lee C, Kim J, Zhang Y, Jeon M, Liu C, Song L, Lovell JF, Kim C (2015) Dual-color photoacoustic lymph node imaging using nanoformulated naphthalocyanines. Biomaterials 73:142–148CrossRefGoogle Scholar
  79. 79.
    Fan Q, Cheng K, Hu X, Ma X, Zhang R, Yang M, Lu X, Xing L, Huang W, Gambhir SS (2014) Transferring biomarker into molecular probe: melanin nanoparticle as a naturally active platform for multimodality imaging. J Am Chem Soc 136(43):15185–15194CrossRefGoogle Scholar
  80. 80.
    Lee MY, Lee C, Jung HS, Jeon M, Kim KS, Yun SH, Kim C, Hahn SK (2015) Biodegradable photonic melanoidin for theranostic applications. ACS Nano 10:822CrossRefGoogle Scholar
  81. 81.
    Agarwal A, Huang S, O’Donnell M, Day K, Day M, Kotov N, Ashkenazi S (2007) Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. J Appl Phys 102(6):064701CrossRefGoogle Scholar
  82. 82.
    Manohar S, Vaartjes SE, van Hespen JC, Klaase JM, van den Engh FM, Steenbergen W, Van Leeuwen TG (2007) Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics. Opt Express 15(19):12277–12285CrossRefGoogle Scholar
  83. 83.
    Song J, Kim J, Hwang S, Jeon M, Jeong S, Kim C, Kim S (2016) “Smart” gold nanoparticles for photoacoustic imaging: an imaging contrast agent responsive to the cancer microenvironment and signal amplification via pH-induced aggregation. Chem Commun 52(53):8287–8290CrossRefGoogle Scholar
  84. 84.
    Kim C, Jeon M, Wang L (2011) Nonionizing photoacoustic cystography in vivo. Opt Lett 36(18):3599CrossRefGoogle Scholar
  85. 85.
    Saini R, Poh CF (2013) Photodynamic therapy: a review and its prospective role in the management of oral potentially malignant disorders. Oral Dis 19(5):440–451CrossRefGoogle Scholar
  86. 86.
    Chen J, Keltner L, Christophersen J, Zheng F, Krouse M, Singhal A, Wang S-s (2002) New technology for deep light distribution in tissue for phototherapy. Cancer J 8(2):154–163CrossRefGoogle Scholar
  87. 87.
    Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2008) Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23(3):217–228CrossRefGoogle Scholar
  88. 88.
    Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128(6):2115–2120CrossRefGoogle Scholar
  89. 89.
    Huang P, Lin J, Li W, Rong P, Wang Z, Wang S, Wang X, Sun X, Aronova M, Niu G (2013) Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy. Angew Chem 125(52):14208–14214CrossRefGoogle Scholar
  90. 90.
    Lu W, Melancon MP, Xiong C, Huang Q, Elliott A, Song S, Zhang R, Flores LG, Gelovani JG, Wang LV (2011) Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma. Cancer Res 71(19):6116–6121CrossRefGoogle Scholar
  91. 91.
    Jing L, Liang X, Deng Z, Feng S, Li X, Huang M, Li C, Dai Z (2014) Prussian blue coated gold nanoparticles for simultaneous photoacoustic/CT bimodal imaging and photothermal ablation of cancer. Biomaterials 35(22):5814–5821CrossRefGoogle Scholar
  92. 92.
    Liu H, Chen D, Li L, Liu T, Tan L, Wu X, Tang F (2011) Multifunctional gold nanoshells on silica nanorattles: a platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity. Angew Chem 123(4):921–925CrossRefGoogle Scholar
  93. 93.
    Li M-L, Wang JC, Schwartz JA, Gill-Sharp KL, Stoica G, Wang LV (2009) In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature. J Biomed Opt 14(1):010507CrossRefGoogle Scholar
  94. 94.
    Yang H-W, Liu H-L, Li M-L, Hsi I-W, Fan C-T, Huang C-Y, Lu Y-J, Hua M-Y, Chou H-Y, Liaw J-W (2013) Magnetic gold-nanorod/PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy. Biomaterials 34(22):5651–5660CrossRefGoogle Scholar
  95. 95.
    Chen Y-S, Frey W, Kim S, Kruizinga P, Homan K, Emelianov S (2011) Silica-coated gold nanorods as photoacoustic signal nanoamplifiers. Nano Lett 11(2):348–354CrossRefGoogle Scholar
  96. 96.
    Chen Y-S, Frey W, Kim S, Homan K, Kruizinga P, Sokolov K, Emelianov S (2010) Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy. Opt Express 18(9):8867–8878CrossRefGoogle Scholar
  97. 97.
    Tong L, Wei Q, Wei A, Cheng JX (2009) Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects. Photochem Photobiol 85(1):21–32CrossRefGoogle Scholar
  98. 98.
    Moon GD, Choi S-W, Cai X, Li W, Cho EC, Jeong U, Wang LV, Xia Y (2011) A new theranostic system based on gold nanocages and phase-change materials with unique features for photoacoustic imaging and controlled release. J Am Chem Soc 133(13):4762–4765CrossRefGoogle Scholar
  99. 99.
    Chen J, Glaus C, Laforest R, Zhang Q, Yang M, Gidding M, Welch MJ, Xia Y (2010) Gold nanocages as photothermal transducers for cancer treatment. Small 6(7):811–817CrossRefGoogle Scholar
  100. 100.
    Everhart JE, Ruhl CE (2009) Burden of digestive diseases in the United States part I: overall and upper gastrointestinal diseases. Gastroenterology 136(2):376–386CrossRefGoogle Scholar
  101. 101.
    Han K, Choi H, Jung D, Park S, Cho K, Joung J, Seo H, Chung J, Lee K (2011) A prospective evaluation of conventional cystography for detection of urine leakage at the vesicourethral anastomosis site after radical prostatectomy based on computed tomography. Clin Radiol 66(3):251–256CrossRefGoogle Scholar
  102. 102.
    Morgan DE, Nallamala LK, Kenney PJ, Mayo MS, Rue LW (2000) CT cystography: radiographic and clinical predictors of bladder rupture. Am J Roentgenol 174(1):89–95CrossRefGoogle Scholar
  103. 103.
    Wang Z, Lee CS, Waltzer WC, Liu J, Xie H, Yuan Z, Pan Y (2007) In vivo bladder imaging with microelectromechanical-systems-based endoscopic spectral domain optical coherence tomography. J Biomed Opt 12(3):034009CrossRefGoogle Scholar
  104. 104.
    Jeon M, Kim J, Kim C (2013) Photoacoustic cystography. J Vis Exp 76:e50340–e50340Google Scholar
  105. 105.
    Koo J, Jeon M, Oh Y, Kang HW, Kim J, Kim C, Oh J (2012) In vivo non-ionizing photoacoustic mapping of sentinel lymph nodes and bladders with ICG-enhanced carbon nanotubes. Phys Med Biol 57(23):7853CrossRefGoogle Scholar
  106. 106.
    Park S, Kim J, Jeon M, Song J, Kim C (2014) In vivo photoacoustic and fluorescence cystography using clinically relevant dual modal Indocyanine green. Sensors 14(10):19660–19668CrossRefGoogle Scholar
  107. 107.
    Su R, Ermilov S, Liopo A, Oraevsky A (2013) Laser optoacoustic tomography: towards new technology for biomedical diagnostics. Nucl Instrum Methods Phys Res Sect A 720:58–61CrossRefGoogle Scholar
  108. 108.
    Kitai T, Torii M, Sugie T, Kanao S, Mikami Y, Shiina T, Toi M (2014) Photoacoustic mammography: initial clinical results. Breast Cancer 21(2):146–153CrossRefGoogle Scholar
  109. 109.
    Dogra VS, Chinni BK, Valluru KS, Moalem J, Giampoli EJ, Evans K, Rao NA (2014) Preliminary results of ex vivo multispectral photoacoustic imaging in the management of thyroid cancer. Am J Roentgenol 202(6):W552–W558CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Creative IT EngineeringPohang University of Science and TechnologyPohangRepublic of Korea

Personalised recommendations