Advertisement

Surface Plasmon Resonance Sensors for Medical Diagnosis

  • Yeşeren Saylan
  • Fatma Yılmaz
  • Erdoğan Özgür
  • Ali Derazshamshir
  • Nilay Bereli
  • Handan Yavuz
  • Adil DenizliEmail author
Chapter

Abstract

Surface plasmon resonance (SPR) sensors have fascinated impressive attention to detect clinically related analytes in recent years. SPR sensors have also multiple advantages over existing conventional diagnostic tools such as easy preparation, no requirement of labeling, and high specificity and sensitivity with low cost, and they provide real-time detection capability. There are some articles and reviews in literature focusing on the applications of SPR-based sensors for the diagnosis of medically important entities such as proteins, cells, viruses, disease biomarkers, etc. These articles generally give information on the determination of such structures merely, whereas this presented manuscript combines recent literature for most of the medically important structures together including proteins, hormones, nucleic acids, whole cells, and drugs that especially the latest applications of SPR sensors for medical diagnosis to follow up new strategies and discuss how SPR strategy is brought to solve the medical problems.

References

  1. 1.
    Labib M, Sargent EH, Kelley SO (2016) Electrochemical methods for the analysis of clinically relevant biomolecules. Chem Rev 116:9001–9090CrossRefGoogle Scholar
  2. 2.
    Stojanović I, Schasfoort RBM, Terstappen LWMM (2014) Analysis of cell surface antigens by surface plasmon resonance imaging. Biosens Bioelectron 52:36–43CrossRefGoogle Scholar
  3. 3.
    Saylan Y, Yılmaz F, Derazshamshir A, Yılmaz E, Denizli A (2017) Synthesis of hydrophobic nanoparticles for real-time lysozyme detection using surface plasmon resonance sensor. J Mol Recognit 30:e2631.1–7CrossRefGoogle Scholar
  4. 4.
    Saylan Y, Akgönüllü S, Çimen D, Derazshamshir A, Bereli N, Yılmaz F, Denizli A (2017) Surface plasmon resonance nanosensors based on molecularly imprinted nanofilm for detection of pesticides. Sensors Actuators B Chem 241:446–454CrossRefGoogle Scholar
  5. 5.
    Ronkainen NJ, Halsall HB, Heineman WR (2010) Electrochemical biosensors. Chem Soc Rev 39:1747–1763CrossRefGoogle Scholar
  6. 6.
    Guerreiro GV, Zaitouna AJ, Lai RY (2014) Characterization of an electrochemical mercury sensor using alternating current, cyclic, square wave and differential pulse voltammetry. Anal Chim Acta 810:79–85CrossRefGoogle Scholar
  7. 7.
    Campuzanoa S, Kuralay F, Lobo-Castañón MJ, Bartošík M, Vyavaharea K, Paleček E, Haake DA, Wang J (2011) Ternary monolayers as DNA recognition interfaces for direct and sensitive electrochemical detection in untreated clinical samples. Biosens Bioelectron 26(8):3577–3583CrossRefGoogle Scholar
  8. 8.
    Atay S, Pişkin K, Yılmaz F, Çakır C, Yavuz H, Denizli A (2016) Quartz crystal microbalance based biosensors for detecting highly metastatic breast cancer cells via their transferrin receptors. Anal Methods 8:153–161CrossRefGoogle Scholar
  9. 9.
    Çiçek Ç, Yılmaz F, Özgür E, Yavuz H, Denizli A (2016) Molecularly imprinted quartz crystal microbalance sensor (QCM) for bilirubin detection. Chemosensors 4(4):21–34CrossRefGoogle Scholar
  10. 10.
    Sener G, Ozgur E, Yılmaz E, Uzun L, Say R, Denizli A (2010) Quartz crystal microbalance based nanosensor for lysozyme detection with lysozyme imprinted nanoparticles. Biosens Bioelectron 26:815–821CrossRefGoogle Scholar
  11. 11.
    Wang Y, Li J, Viehland D (2014) Magnetoelectrics for magnetic sensor applications: status, challenges and perspectives. Mater Today 17(6):269–275CrossRefGoogle Scholar
  12. 12.
    Melzer M, Karnaushenko D, Lin G, Baunack S, Makarov D, Schmidt OG (2015) Direct transfer of magnetic sensor devices to elastomeric supports for stretchable electronics. Adv Mater 27(8):1333–1338CrossRefGoogle Scholar
  13. 13.
    Zhang Y, Shen J, Yang H, Yang Y, Zhou Z, Yang S (2015) A highly selective magnetic sensor for Cd2+ in living cells with (Zn, Mn)-doped iron oxide nanoparticles. Sensors Actuators B Chem 207:887–892CrossRefGoogle Scholar
  14. 14.
    Peiker P, Oesterschulze E (2015) Geometrically tuned wettability of dynamic micromechanical sensors for an improved in-liquid operation. Appl Phys Lett 107(10):101903–101907CrossRefGoogle Scholar
  15. 15.
    Borin D, Melli M, Zilio SD, Toffoli V, Scoles G, Toffoli G, Lazzarino M (2014) How to engineer superhydrophobic micromechanical sensors preserving mass resolution. Sensors Actuators B Chem 199:62–69CrossRefGoogle Scholar
  16. 16.
    Hu KM, Zhang WM, Shi X, Yan H, Peng ZK, Meng G (2016) Adsorption-induced surface effects on the dynamical characteristics of micromechanical resonant sensors for in situ real-time detection. J Appl Mech 83(8):081009–081020CrossRefGoogle Scholar
  17. 17.
    Guo X (2012) Surface plasmon resonance based biosensor technique: a review. J Biophotonics 5(7):483–501CrossRefGoogle Scholar
  18. 18.
    Fu E, Chinowsky T, Nelson K, Yager P (2008) Chapter 10: SPR imaging for clinical diagnostics. In: Handbook of surface plasmon resonance. Royal Society of Chemistry, Cambridge, pp 313–332CrossRefGoogle Scholar
  19. 19.
    Caucheteur C, Guo T, Albert J (2015) Review of plasmonic fiber optic biochemical sensors: improving the limit of detection. Anal Bioanal Chem 407:3883–3897CrossRefGoogle Scholar
  20. 20.
    Wood RW (1902) On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Philos Mag 4:396–402CrossRefGoogle Scholar
  21. 21.
    Cowan JJ (1972) The surface plasmon resonance effect in holography. Opt Commun 5:69–72CrossRefGoogle Scholar
  22. 22.
    Schneider FW (1982) Non-linear Raman spectroscopy and its chemical applications. Biological applications of resonance CARS, Reidel Publishing Company Dordrecht: Holland/Boston: USA/London: England vol 93, pp 445–459CrossRefGoogle Scholar
  23. 23.
    Rothenbausler B, Knoll W (1988) Surface–plasmon microscopy. Nature 332:615–617CrossRefGoogle Scholar
  24. 24.
    Hickel W, Knoll W (1989) Surface plasmon microscopic imaging of ultrathin metal coatings. Acta Metall 37:2141–2144CrossRefGoogle Scholar
  25. 25.
    Otto A (1968) Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z Phys 16:398–410CrossRefGoogle Scholar
  26. 26.
    Buck RP (1990) Biosensor technology: fundamentals and applications. Marcel Dekker, New YorkGoogle Scholar
  27. 27.
    Szentirmay Z (1992) Surface plasmon spectroscopy of metal/dielectric structures. Spectrochim Acta 48:9–17CrossRefGoogle Scholar
  28. 28.
    Welford K (1991) Surface plasmon-polaritons and their uses. Opt Quant Electron 23:1–27CrossRefGoogle Scholar
  29. 29.
    Gutiérrez-Gallego R, Llop E, Bosch J, Segura J (2011) Surface plasmon resonance in doping analysis. Anal Bioanal Chem 401:389–403CrossRefGoogle Scholar
  30. 30.
    Masson JF (2017) Surface plasmon resonance clinical biosensors for medical diagnostics. ACS Sens 2(1):16–30CrossRefGoogle Scholar
  31. 31.
    Situ C, Mooney MH, Elliott CT, Buijs J (2010) Advances in surface plasmon resonance biosensor technology towards high-throughput, food-safety analysis. TrAC Trends Anal Chem 29:1305–1315CrossRefGoogle Scholar
  32. 32.
    Helmerhorst E, Chandler DJ, Nussio M, Mamotte CD (2012) Real-time and label-free bio-sensing of molecular interactions by surface plasmon resonance: a laboratory medicine perspective. Clin Biochem Rev 33:161–173Google Scholar
  33. 33.
    Tokel O, Yildiz UH, Inci F, Durmus NG, Ekiz OO, Turker B, Cetin C, Rao S, Sridhar K, Natarajan N, Shafiee H, Dana A, Demirci U (2015) Portable microfluidic integrated plasmonic platform for pathogen detection. Sci Rep 5:9152–9161CrossRefGoogle Scholar
  34. 34.
    Laocharoensuk R (2016) Development of electrochemical immunosensors towards point-of-care cancer diagnostics: clinically relevant studies. Electroanalysis 28:1716–1729CrossRefGoogle Scholar
  35. 35.
    Ouellet E, Lund L, Lagally E (2013) Chapter 30: Multiplexed surface plasmon resonance imaging for protein biomarker analysis. In: Microfluidic diagnostics. Methods in molecular biology, Springer Science+Business Media, LLC, Berlin/Heidelberg, Germany vol 949. pp 473–490Google Scholar
  36. 36.
    Kirsch J, Siltanen C, Zhou Q, Revzin A, Simonian A (2013) Biosensor technology: recent advances in threat agent detection and medicine. Chem Soc Rev 42:8733–8769CrossRefGoogle Scholar
  37. 37.
    Ranjan R, Esimbekova EN, Kratasyuk VA (2017) Rapid biosensing tools for cancer biomarkers. Biosens Bioelectron 87:918–930CrossRefGoogle Scholar
  38. 38.
    Aćimović SS, Ortega MA, Sanz V, Berthelot J, Garcia-Cordero JL, Renger J, Maerkl SJ, Kreuzer MP, Quidant R (2014) LSPR chip for parallel, rapid, and sensitive detection of cancer markers in serum. Nano Lett 14:2636–2641CrossRefGoogle Scholar
  39. 39.
    Ertürk G, Özen H, Tümer MA, Mattiasson B, Denizli A (2016) Microcontact imprinting based surface plasmon resonance (SPR) biosensor for real-time and ultrasensitive detection of prostate specific antigen (PSA) from clinical samples. Sensors Actuators B Chem 224:823–832CrossRefGoogle Scholar
  40. 40.
    Uludag Y, Tothill IE (2012) Cancer biomarker detection in serum samples using surface plasmon resonance and quartz crystal microbalance sensors with nanoparticle signal amplification. Anal Chem 84:5898–5904CrossRefGoogle Scholar
  41. 41.
    Türkoğlu EA, Yavuz H, Uzun L, Akgöl S, Denizli A (2013) The fabrication of nanosensor-based surface plasmon resonance for IgG detection. Artif Cells Nanomed Biotechnol 41:213–221CrossRefGoogle Scholar
  42. 42.
    Ertürk G, Uzun L, Tümer MA, Say R, Denizli A (2011) Fab fragments imprinted SPR biosensor for real-time human immunoglobulin G detection. Biosens Bioelectron 28(1):97–104CrossRefGoogle Scholar
  43. 43.
    Dibekkaya H, Saylan Y, Yılmaz F, Derazshamshir A, Denizli A (2016) Surface plasmon resonance sensors for real-time detection of cyclic citrullinated peptide antibodies. J Macromol Sci, Part A: Pure Appl Chem 53:585–594CrossRefGoogle Scholar
  44. 44.
    Chung JW, Kim SD, Bernhardt R, Pyun JC (2005) Application of SPR biosensor for medical diagnostics of human hepatitis B virus (hHBV). Sensors Actuators B Chem 111(112):416–422CrossRefGoogle Scholar
  45. 45.
    Uzun L, Say R, Ünal S, Denizli A (2009) Production of surface plasmon resonance based assay kit for hepatitis diagnosis. Biosens Bioelectron 24:2878–2884CrossRefGoogle Scholar
  46. 46.
    Lu J, Stappen TV, Spasic D, Delport F, Vermeire S, Gils A, Lammertyn J (2016) Fiber optic-SPR platform for fast and sensitive infliximab detection in serum of inflammatory bowel disease patients. Biosens Bioelectron 79:173–179CrossRefGoogle Scholar
  47. 47.
    Ramanaviciene A, German N, Kausaite-Minkstimiene A, Voronovic J, Kirlyte J, Ramanavicius A (2012) Electrochemical and electroassisted chemiluminescence methods based immunosensor for the determination of antibodies against human growth hormone were performed as comparative studies by surface plasmon resonance. Biosens Bioelectron 36:48–55CrossRefGoogle Scholar
  48. 48.
    Im H, Shao H, Park YI, Peterson VM, Castro CM, Weissleder R, Lee H (2014) Label-free detection and molecular profiling of exosomes with a nanoplasmonic sensor. Nat Biotechnol 32(5):490–495CrossRefGoogle Scholar
  49. 49.
    He L, Pagneux Q, Larroulet I, Serrano AY, Pesquera A, Zurutuza A, Mandler D, Boukherroub R, Szunerits S (2017) Label-free femtomolar cancer biomarker detection in human serum using graphene-coated surface plasmon resonance chips. Biosens Bioelectron 89:606–611CrossRefGoogle Scholar
  50. 50.
    Liang RP, Yao GH, Fan LX, Qiu JD (2012) Magnetic Fe3O4@Au composite-enhanced surface plasmon resonance for ultrasensitive detection of magnetic nanoparticle-enriched α-fetoprotein. Anal Chim Acta 737:22–28CrossRefGoogle Scholar
  51. 51.
    Osman B, Uzun L, Beşirli N, Denizli A (2013) Microcontact imprinted surface plasmon resonance sensor for myoglobin detection. Mater Sci Eng C 33:3609–3614CrossRefGoogle Scholar
  52. 52.
    Sener G, Uzun L, Say R, Denizli A (2011) Use of molecular imprinted nanoparticles as biorecognition element on surface plasmon resonance sensor. Sensors Actuators B Chem 160:791–799CrossRefGoogle Scholar
  53. 53.
    Bocková M, Song XC, Gedeonová E, Levová K, Kalousová M, Zima T, Homola J (2016) Surface plasmon resonance biosensor for detection of pregnancy associated plasma protein A2 in clinical samples. Anal Bioanal Chem 408(26):7265–7269CrossRefGoogle Scholar
  54. 54.
    Murakami K, Tokuda M, Suzuki T, Irie Y, Hanaki M, Izuo N, Monobe Y, Akagi K-i, Ishii R, Tatebe H, Tokuda T, Maeda M, Kume T, Shimizu T, Irie K (2016) Monoclonal antibody with conformational specificity for a toxic conformer of amyloid β42 and its application toward the Alzheimer’s disease diagnosis. Sci Rep 6:29038–29050CrossRefGoogle Scholar
  55. 55.
    Sankiewicz A, Romanowicz L, Laudanski P, Zelazowska-Rutkowska B, Puzan B, Cylwik B, Gorodkiewicz E (2016) SPR imaging biosensor for determination of laminin-5 as a potential cancer marker in biological material. Anal Bioanal Chem 408:5269–5276CrossRefGoogle Scholar
  56. 56.
    Brun APL, Soliakov A, Shah DSH, Holt SA, McGill A, Lakey JH (2015) Engineered self-assembling monolayers for label free detection of influenza nucleoprotein. Biomed Microdevices 17:49–59CrossRefGoogle Scholar
  57. 57.
    Liu Y, Liu Q, Chen S, Cheng F, Wang H, Peng W (2015) Surface plasmon resonance biosensor based on smart phone platforms. Sci Rep 5:12864–12873CrossRefGoogle Scholar
  58. 58.
    Sener G, Ozgur E, Rad AY, Uzun L, Say R, Denizli A (2013) Rapid real-time detection of procalcitonin using a microcontact imprinted surface plasmon resonance biosensor. Analyst 138:422–428CrossRefGoogle Scholar
  59. 59.
    Mariani S, Minunni M (2014) Surface plasmon resonance applications in clinical analysis. Anal Bioanal Chem 406:2303–2323CrossRefGoogle Scholar
  60. 60.
    Cenci L, Andreetto E, Vestri A, Bovi M, Barozzi M, Iacob E, Busato M, Castagna A, Girelli D, Bossi AM (2015) Surface plasmon resonance based on molecularly imprinted nanoparticles for the picomolar detection of the iron regulating hormone Hepcidin-25. J Nanobiotechnol 13:51–66CrossRefGoogle Scholar
  61. 61.
    Zhang Q, Jing L, Zhang J, Ren Y, Wang Y, Wang Y, Wei T, Liedberg B (2014) Surface plasmon resonance sensor for femtomolar detection of testosterone with water-compatible macroporous molecularly imprinted film. Anal Biochem 463:7–14CrossRefGoogle Scholar
  62. 62.
    Vashist SK, Marion Schneider E, Barth E, Luong JHT (2016) Surface plasmon resonance-based immunoassay for procalcitonin. Anal Chim Acta 938:129–136CrossRefGoogle Scholar
  63. 63.
    Treviño J, Calle A, Rodríguez-Frade JM, Mellado M, Lechuga LM (2009) Single- and multi-analyte determination of gonadotropic hormones in urine by surface plasmon resonance immunoassay. Anal Chim Acta 647:202–209CrossRefGoogle Scholar
  64. 64.
    Treviño J, Calle A, Rodríguez-Frade JM, Mellado M, Lechuga LM (2009) Surface plasmon resonance immunoassay analysis of pituitary hormones in urine and serum samples. Clin Chim Acta 403:56–62CrossRefGoogle Scholar
  65. 65.
    Srivastava SK, Verma R, Gupta BD, Khalaila I, Abdulhalim I (2015) SPR based fiber optic sensor for the detection of vitellogenin: an endocrine disruption biomarker in aquatic environments. Biosens J 4:1–5CrossRefGoogle Scholar
  66. 66.
    Yockell-Lelièvre H, Bukar N, McKeating KS, Arnaud M, Cosin P, Guo Y, Dupret-Carruel J, Mouginb B, Masson JF (2015) Plasmonic sensors for the competitive detection of testosterone. Analyst 140:5105–5112CrossRefGoogle Scholar
  67. 67.
    Sanghera N, Anderson A, Nuar N, Xie C, Mitchell D, Klein-Seetharaman J (2017) Insulin biosensor development: a case study. Int J Parallel Emergent Distrib Syst 32(1):119–138CrossRefGoogle Scholar
  68. 68.
    Sharon E, Freeman R, Riskin M, Gil N, Tzfati Y, Willner I (2010) Optical, electrical and surface plasmon resonance methods for detecting telomerase activity. Anal Chem 82:8390–8397CrossRefGoogle Scholar
  69. 69.
    Diltemiz SE, Denizli A, Ersöz A, Say R (2008) Molecularly imprinted ligand-exchange recognition assay of DNA by SPR system using guanosine and guanine recognition sites of DNA. Sensors Actuators B Chem 133:484–488CrossRefGoogle Scholar
  70. 70.
    Bini A, Mascini M, Mascini M, Turner APF (2011) Selection of thrombin-binding aptamers by using computational approach for aptasensor application. Biosens Bioelectron 26:4411–4416CrossRefGoogle Scholar
  71. 71.
    Kaur G, Paliwal A, Tomar M, Gupta V (2016) Detection of Neisseria meningitidis using surface plasmon resonance based DNA biosensor. Biosens Bioelectron 78:106–110CrossRefGoogle Scholar
  72. 72.
    Gifford LK, Sendroiu IE, Corn RM, Luptak A (2010) Attomole detection of mesophilic DNA polymerase products by nanoparticle-enhanced surface plasmon resonance imaging on glassified gold surfaces. J Am Chem Soc 132:9265–9267CrossRefGoogle Scholar
  73. 73.
    D’Agata R, Breveglieri G, Zanoli LM, Borgatti M, Spoto G, Gambari R (2011) Direct detection of point mutations in nonamplified human genomic DNA. Anal Chem 83:8711–8717CrossRefGoogle Scholar
  74. 74.
    Cho H, Yeh EC, Sinha R, Laurence T, Bearinger J, Lee L (2012) Single-step nanoplasmonic VEGF165 aptasensor for early cancer diagnosis. ACS Nano 6:7607–7614CrossRefGoogle Scholar
  75. 75.
    Jahanshahi P, Zalnezhad E, Sekaran SD, Adikan FRM (2014) Rapid immunoglobulin M-based dengue diagnostic test using surface plasmon resonance biosensor. Sci Rep 4:3851–3858CrossRefGoogle Scholar
  76. 76.
    Altintas Z, Pocock J, Thompson KA, Tothill IE (2015) Comparative investigations for adenovirus recognition and quantification: plastic or natural antibodies? Biosens Bioelectron 74:996–1004CrossRefGoogle Scholar
  77. 77.
    Basso CR, Tozato CC, Ribeiro MCM, Junior JPA, Pedros VA (2013) A immunosensor for the diagnosis of canine distemper virus infection using SPR and EIS. Anal Methods 5:5089–5096CrossRefGoogle Scholar
  78. 78.
    Bai H, Wang R, Hargis B, Lu H, Li Y (2012) A SPR aptasensor for detection of avian influenza virus H5N1. Sensors 12:12506–12518CrossRefGoogle Scholar
  79. 79.
    Diltemiz SE, Ersöz A, Hür D, Keçili R, Say R (2013) 4-Aminophenyl boronic acid modified gold platforms for influenza diagnosis. Mater Sci Eng C 33:824–830CrossRefGoogle Scholar
  80. 80.
    Altintas Z, Gittens M, Guerreiro A, Thompson KA, Walker J, Piletsky S, Tothill IE (2015) Detection of waterborne viruses using high affinity molecularly imprinted polymers. Anal Chem 87:6801–6807CrossRefGoogle Scholar
  81. 81.
    Riedel T, Rodriguez-Emmenegger C, Santos Pereira A, Bědajánková A, Jinoch P, Boltovets PM, Brynda E (2014) Diagnosis of Epstein–Barr virus infection in clinical serum samples by an SPR biosensor assay. Biosens Bioelectron 55:278–284CrossRefGoogle Scholar
  82. 82.
    Yilmaz E, Majidi D, Ozgur E, Denizli A (2015) Whole cell imprinting based Escherichia Coli sensors: a study for SPR and QCM. Sensors Actuators B Chem 209:714–721CrossRefGoogle Scholar
  83. 83.
    Wang Y, Ye Z, Si C, Ying Y (2011) Subtractive inhibition assay for the detection of E. coli O157:H7 using surface plasmon resonance. Sensors 11:2728–2739CrossRefGoogle Scholar
  84. 84.
    Karoonuthaisiri N, Charlermroj R, Morton MJ, Oplatowska-Stachowiak M, Grant IR, Elliott CT (2014) Development of a M13 bacteriophage-based SPR detection using Salmonella as a case study. Sensors Actuators B Chem 190:214–220CrossRefGoogle Scholar
  85. 85.
    Arya SK, Singh A, Naidoo R, Wu P, McDermott MT, Evoy S (2011) Chemically immobilized T4-bacteriophage for specific Escherichia coli detection using surface plasmon resonance. Analyst 136:486–492CrossRefGoogle Scholar
  86. 86.
    Kuo YC, Ho JH, Yen TJ, Chen HF, Lee OKS (2011) Development of a surface plasmon resonance biosensor for real-time detection of osteogenic differentiation in live mesenchymal stem cells. PLoS One 6(7):e22382–e22389CrossRefGoogle Scholar
  87. 87.
    Yanase Y, Hiragun T, Yanase T, Kawaguchi T, Ishii K, Hide M (2013) Application of SPR imaging sensor for detection of individual living cell reactions and clinical diagnosis of type I allergy. Allergol Int 62:163–169CrossRefGoogle Scholar
  88. 88.
    Yanase Y, Hiragun T, Yanase T, Kawaguchi T, Ishii K, Kumazaki N, Obara T, Hide M (2014) Clinical diagnosis of type I allergy by means of SPR imaging with less than a microliter of peripheral blood. Sens Bio-Sens Res 2:43–48CrossRefGoogle Scholar
  89. 89.
    Altintas Z, France B, Ortiz JO, Tothill IE (2016) Computationally modelled receptors for drug monitoring using an optical based biomimetic SPR sensor. Sensors Actuators B Chem 224:726–737CrossRefGoogle Scholar
  90. 90.
    Altintas Z, Guerreiro A, Piletsky SA, Tothill IE (2015) NanoMIP based optical sensor for pharmaceuticals monitoring. Sensors Actuators B Chem 213:305–313CrossRefGoogle Scholar
  91. 91.
    Yockell-Lelièvre H, Bukar N, Toulouse JL, Pelletiera JN, Masson JF (2016) Naked-eye nanobiosensor for therapeutic drug monitoring of methotrexate. Analyst 141:697–703CrossRefGoogle Scholar
  92. 92.
    Pernites RB, Ponnapati RR, Felipe MJ, Advincula RC (2011) Electropolymerization molecularly imprinted polymer (E-MIP) SPR sensing of drug molecules: pre-polymerization complexed terthiophene and carbazole electroactive monomers. Biosens Bioelectron 26:2766–2771CrossRefGoogle Scholar
  93. 93.
    Pernites RB, Ponnapati RR, Advincula RC (2010) Surface plasmon resonance (SPR) detection of theophylline via electropolymerized molecularly imprinted polythiophenes. Macromolecules 43:9724–9735CrossRefGoogle Scholar
  94. 94.
    Golub E, Pelossof G, Freeman R, Zhang H, Willner I (2009) Electrochemical, photoelectrochemical, and surface plasmon resonance detection of cocaine using supramolecular aptamer complexes and metallic or semiconductor nanoparticles. Anal Chem 81:9291–9298CrossRefGoogle Scholar
  95. 95.
    Wang Y, Zhang C, Zhang Y, Fang H, Min C, Zhu S, Yuan XC (2015) Investigation of phase SPR biosensor for efficient targeted drug screening with high sensitivity and stability. Sensors Actuators B Chem 209:313–322CrossRefGoogle Scholar
  96. 96.
    Wang Y, Zhang S, Zhang C, Zhao Z, Zheng X, Xue L, Liu J, Yuan XC (2016) Investigation of an SPR biosensor for determining the influence of connexin 43 expression on the cytotoxicity of cisplatin. Analyst 141:3411–3421CrossRefGoogle Scholar
  97. 97.
    Sari E, Üzek R, Duman M, Denizli A (2016) Fabrication of surface plasmon resonance nanosensor for the selective determination of erythromycin via molecular imprinted nanoparticles. Talanta 150:607–614CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yeşeren Saylan
    • 1
  • Fatma Yılmaz
    • 2
  • Erdoğan Özgür
    • 1
    • 3
  • Ali Derazshamshir
    • 1
  • Nilay Bereli
    • 1
  • Handan Yavuz
    • 1
  • Adil Denizli
    • 1
    Email author
  1. 1.Department of ChemistryHacettepe UniversityAnkaraTurkey
  2. 2.Department of Chemistry TechnologyAbant Izzet Baysal UniversityBoluTurkey
  3. 3.Department of ChemistryAksaray UniversityAksarayTurkey

Personalised recommendations