Advertisement

Surface Enhanced Raman Spectroscopy for Medical Diagnostics

  • Izabella J. Jahn
  • Andreea I. Radu
  • Karina Weber
  • Dana Cialla-May
  • Juergen PoppEmail author
Chapter

Abstract

Medical diagnosis requires reliable identification of very low concentration of different biomarkers specific for medical conditions in a time-effective manner. In this chapter, we summarize the work reported on the application of surface-enhanced Raman spectroscopy for the detection and the identification of different biomarkers in body fluids, tissues, or in vivo.

List of Abbreviations

1-DT

1-Decanethiol

4-MBA

4-Mercaptobenzoic acid

AA

Ascorbic acid

AD

Alzheimer’s disease

AFM

Atomic force microscopy

AFP

Alpha-fetoprotein

AGC

Advanced gastric cancer

AIBN

Azobis(isobutyronitrile)

ATE

Telomeric repeat complementary oligonucleotide

AuFON

Gold film-over-nanospheres

Amyloid β

BSA

Bovine serum albumin

Ce6

Chlorin e6

CEA

Carcinoembryonic antigen

CGM

Continuous glucose monitoring

CK-MB

Creatine kinase MB

CPBT

2-Cyano-2-propyl benzodithioate

CSF

Cerebrospinal fluid

cTnI

Troponin I

cTnT

Troponin T

CVD

Cardiovascular diseases

Cy5

Cyanine 5

DNA

Deoxyribonucleic acid

DT

Decanethiol

DTNB

5,5-Dithiobis(2-dinitrobenzoic acid)

DTTC

Diethylthiatricarbocyanine iodide

EBL

Electron beam lithography

ECG

Electrocardiogram

EDC

1-Ethyl-3-(3-dimethyl-aminopropyl)carbodiimide

EGA

Clarke error grid analysis

EGC

Early gastric cancer

EGFR

Epidermal growth factor receptor

ELISA

Enzyme-linked immunosorbent assay

G−

Gram negative

G+

Gram positive

GOx

Glucose oxidase

HBsAg

Hepatitis B virus antigen

HCPCF

Hollow core photonic crystal fiber

HeLa

Human cervical cells

HEMA

2-Hydroxyethyl methacrylate

HER2

Human epidermal growth factor receptor 2

HIV-1

Human immunodeficiency virus

HPLC

High-performance liquid chromatography

HPV

Human papillomavirus

IgG

Immunoglobulin G

iMS

Inverse molecular sentinel

ISO

International Organization Standard

ITO

Indium tin oxide

LA

Lipoic acid

LoC-SERS

Lab-on-a-chip SERS

LOD

Limit of detection

MBs

Magnetic nanobeads

MGITC

Malachite green isothiocyanate

MH

6-Mercapto-1-hexanol

MI

Myocardial infarction

miR21

Micro ribonucleic acid 21

miRNA

Micro ribonucleic acid

MNP

Magnetic nanoparticle

MPBA

Mercaptophenylboronic acid

mPEG-SH

O-[2-(3-Mercaptopropionylamino)ethyl]-O′-methylpolyethylene glycol

MPS

3-Methacryloxypropyltrimethoxysilane

MRI

Magnetic resonance imaging

mRNA

Messenger ribonucleic acid

MTC

Mycobacterium tuberculosis complex

MU

11-Mercapto-1-undecanol

MUA

11-Mercaptoundecanoic acid

NHS

N-Hydroxysuccinimide

NP

Nanoparticle

NPs

Nanoparticles

NT

Naphthalenethiol

OAD

Oblique angle deposition

OSCC

Oral squamous carcinoma

PBS

Phosphate-buffered saline

PBST

Phosphate-buffered saline tween-20

PCA

Principal component analysis

pCBAA

Zwitterionic poly(carboxybetaine acrylamide)

PCN

Pyocyanin

PCR

Polymerase chain reaction

PEG

Polyethylene glycol

PEG-SH

Thiolated PEG

PET

Positron emission tomography

PLS-DA

Partial least squares discriminant analysis

RBCs

Red blood cells

Rh6G

Rhodamine 6 G

SAM

Standard addition method

SERRS

Surface-enhanced resonance Raman spectroscopy

SERS

Surface-enhanced Raman spectroscopy

SESORS

Surface-enhanced spatially offset Raman spectroscopy

TAT

Turnaround time

TGFbRII

Transforming growth factor beta receptor II

TMB

3,3′,5, 5′-Tetramethylbenzidine

TPMT

Thiopurine s-methyltransferase

TS

Telomeres substrate

VAN

Vancomycin

VEGF

Vascular endothelial growth factor

References

  1. 1.
    Lane LA, Qian X, Nie S (2015) SERS nanoparticles in medicine: from label-free detection to spectroscopic tagging. Chem Rev 115(19):10489–10529CrossRefGoogle Scholar
  2. 2.
    Nima ZA et al (2014) Applications of surface-enhanced Raman scattering in advanced bio-medical technologies and diagnostics. Drug Metab Rev 46(2):155–175CrossRefGoogle Scholar
  3. 3.
    Vo-Dinh T, Wang H-N, Scaffidi J (2010) Plasmonic nanoprobes for SERS biosensing and bioimaging. J Biophotonics 3(0):89–102Google Scholar
  4. 4.
    Wong Chi L, Dinish US, Olivo M (2015) Recent advances in SPR and SERS for sensitive translational medical diagnostics. Photonics Lasers Med 4:119–149Google Scholar
  5. 5.
    Prochazka M (2016) Medical applications of SERS. In: Prochazka M (ed) Surface-enhanced Raman spectroscopy: bioanalytical, biomolecular and medical applications. Springer International Publishing, Cham, pp 149–211CrossRefGoogle Scholar
  6. 6.
    Recknagel P et al (2012) Liver dysfunction and phosphatidylinositol-3-kinase signalling in early sepsis: experimental studies in rodent models of peritonitis. PLoS Med 9(11):e1001338CrossRefGoogle Scholar
  7. 7.
    Strimbu K, Tavel JA (2010) What are biomarkers? Curr Opin HIV AIDS 5(6):463–466CrossRefGoogle Scholar
  8. 8.
    Zeng X et al (2011) Lung cancer serum biomarker discovery using label-free liquid chromatography-tandem mass spectrometry. J Thorac Oncol 6(4):725–734CrossRefGoogle Scholar
  9. 9.
    Murph M et al (2007) Liquid chromatography mass spectrometry for quantifying plasma lysophospholipids: potential biomarkers for cancer diagnosis. In: Methods in enzymology. Academic, San Diego, pp 1–25Google Scholar
  10. 10.
    Sato Y et al (2012) Identification of a new plasma biomarker of Alzheimer’s disease using metabolomics technology. J Lipid Res 53(3):567–576CrossRefGoogle Scholar
  11. 11.
    McShane AJ, Bunch DR, Wang S (2016) Therapeutic drug monitoring of immunosuppressants by liquid chromatography–mass spectrometry. Clin Chim Acta 454:1–5CrossRefGoogle Scholar
  12. 12.
    Baldelli S et al (2005) High-performance liquid chromatography with ultraviolet detection for therapeutic drug monitoring of everolimus. J Chromatogr B 816(1–2):99–105CrossRefGoogle Scholar
  13. 13.
    Deters M, Kaever V, Kirchner GI (2003) Liquid chromatography/mass spectrometry for therapeutic drug monitoring of immunosuppressants. Anal Chim Acta 492(1–2):133–145CrossRefGoogle Scholar
  14. 14.
    Peltier J et al (2016) Quantitative proteomic analysis exploring progression of colorectal cancer: modulation of the serpin family. J Proteome 148:139–148CrossRefGoogle Scholar
  15. 15.
    Liu Y, Qing H, Deng Y (2014) Biomarkers in Alzheimer’s disease analysis by mass spectrometry-based proteomics. Int J Mol Sci 15(5):7865–7882CrossRefGoogle Scholar
  16. 16.
    Gan SD, Patel KR (2013) Enzyme immunoassay and enzyme-linked immunosorbent assay. J Investig Dermatol 133(9):1–3CrossRefGoogle Scholar
  17. 17.
    Sun S-H et al (2015) Immunoassays for the cancer biomarker CA125 based on a large-birefringence nematic liquid-crystal mixture. Biomed Opt Express 6(1):245–256CrossRefGoogle Scholar
  18. 18.
    Liu X et al (2008) A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering. J Am Chem Soc 130(9):2780–2782CrossRefGoogle Scholar
  19. 19.
    Coverley D et al. (2017) A quantitative immunoassay for lung cancer biomarker CIZ1b in patient plasma. Clin Biochem 50:336–343CrossRefGoogle Scholar
  20. 20.
    Savukoski T et al (2014) Novel sensitive cardiac troponin I immunoassay free from troponin I-specific autoantibody interference. In: Clinical chemistry and laboratory medicine (CCLM), vol 52, pp 1041–1048Google Scholar
  21. 21.
    Guirgis BSS et al (2012) Gold nanoparticle-based fluorescence immunoassay for malaria antigen detection. Anal Bioanal Chem 402(3):1019–1027CrossRefGoogle Scholar
  22. 22.
    Popp J et al (2017) Label-free molecular imaging of biological cells and tissues by linear and non-linear Raman spectroscopic approaches. Angew Chem Int. Ed. 56:4392–4430Google Scholar
  23. 23.
    Li Y-S, Church JS (2014) Raman spectroscopy in the analysis of food and pharmaceutical nanomaterials. J Food Drug Anal 22(1):29–48CrossRefGoogle Scholar
  24. 24.
    Dietzek B et al (2011) Introduction to the Fundamentals of Raman Spectroscopy. In: Dieing T, Hollricher O, Toporski J (eds) Confocal Raman Microscopy. Springer Berlin Heidelberg, Berlin/Heidelberg, pp 21–42Google Scholar
  25. 25.
    Schlücker S (2014) Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew Chem Int Ed 53(19):4756–4795CrossRefGoogle Scholar
  26. 26.
    Etchegoin PG, Le Ru EC (2010) Basic electromagnetic theory of SERS. In: Surface enhanced Raman spectroscopy. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1–37Google Scholar
  27. 27.
    Campion A, Kambhampati P (1998) Surface-enhanced Raman scattering. Chem Soc Rev 27(4):241–250CrossRefGoogle Scholar
  28. 28.
    Cialla D et al (2012) Surface-enhanced Raman spectroscopy (SERS): progress and trends. Anal Bioanal Chem 403(1):27–54CrossRefGoogle Scholar
  29. 29.
    Moskovits M (2005) Surface-enhanced Raman spectroscopy: a brief retrospective. J Raman Spectrosc 36(6–7):485–496CrossRefGoogle Scholar
  30. 30.
    Xu H et al (2000) Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys Rev E 62(3):4318–4324CrossRefGoogle Scholar
  31. 31.
    Lee HM et al (2013) Single-molecule surface-enhanced Raman spectroscopy: a perspective on the current status. Phys Chem Chem Phys 15(15):5276–5287CrossRefGoogle Scholar
  32. 32.
    Kneipp K et al (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78(9):1667–1670CrossRefGoogle Scholar
  33. 33.
    Le Ru EC, Etchegoin PG (2009) Introduction to plasmons and plasmonics, Chapter 3. In: Principles of surface-enhanced Raman spectroscopy. Elsevier, Amsterdam, pp 121–183Google Scholar
  34. 34.
    Le Ru EC, Etchegoin PG (2009) SERS enhancement factors and related topics, Chapter 4. In: Principles of surface-enhanced Raman spectroscopy. Elsevier, Amsterdam, pp 185–264Google Scholar
  35. 35.
    Lin J et al (2013) Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided Photothermal/photodynamic therapy. ACS Nano 7(6):5320–5329CrossRefGoogle Scholar
  36. 36.
    Dinish US et al (2014) Actively targeted in vivo multiplex detection of intrinsic cancer biomarkers using biocompatible SERS nanotags. Sci Rep 4:4075CrossRefGoogle Scholar
  37. 37.
    Zeng L et al (2015) Raman reporter-coupled Agcore@Aushell nanostars for in vivo improved surface enhanced Raman scattering imaging and near-infrared-triggered photothermal therapy in breast cancers. ACS Appl Mater Interfaces 7(30):16781–16791CrossRefGoogle Scholar
  38. 38.
    Hollricher O (2011) Raman instrumentation for confocal Raman microscopy. In: Dieing T, Hollricher O, Toporski J (eds) Confocal Raman microscopy. Springer Berlin Heidelberg, Berlin/Heidelberg, pp 43–60Google Scholar
  39. 39.
    Griffiths PR (2009) Infrared and Raman instrumentation for mapping and imaging. In: Infrared and Raman spectroscopic imaging. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1–64Google Scholar
  40. 40.
    Delhaye M et al (1996) Instrumentation A2 – Turrell, George, Chapter 3. In: Corset J (ed) Raman microscopy. Academic, London, pp 51–173CrossRefGoogle Scholar
  41. 41.
    Rong Z et al (2016) Magnetic immunoassay for cancer biomarker detection based on surface-enhanced resonance Raman scattering from coupled plasmonic nanostructures. Biosens Bioelectron 84:15–21CrossRefGoogle Scholar
  42. 42.
    Hidi IJ et al (2016) Toward levofloxacin monitoring in human urine samples by employing the LoC-SERS technique. J Phys Chem C 120(37):20613–20623CrossRefGoogle Scholar
  43. 43.
    Chen YS et al (2016) Breath analysis based on surface-enhanced Raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons. ACS Nano 10(9):8169–8179CrossRefGoogle Scholar
  44. 44.
    Fu X et al (2016) A SERS-based lateral flow assay biosensor for highly sensitive detection of HIV-1 DNA. Biosens Bioelectron 78:530–537CrossRefGoogle Scholar
  45. 45.
    Jahn M et al (2016) Plasmonic nanostructures for surface enhanced spectroscopic methods. Analyst 141(3):756–793CrossRefGoogle Scholar
  46. 46.
    Lin X-M et al (2009) Surface-enhanced Raman spectroscopy: substrate-related issues. Anal Bioanal Chem 394(7):1729–1745CrossRefGoogle Scholar
  47. 47.
    Stewart ME et al (2008) Nanostructured plasmonic sensors. Chem Rev 108(2):494–521CrossRefGoogle Scholar
  48. 48.
    Wei X, Sebastian S (2014) Rationally designed multifunctional plasmonic nanostructures for surface-enhanced Raman spectroscopy: a review. Rep Prog Phys 77(11):116502CrossRefGoogle Scholar
  49. 49.
    Hidi IJ et al (2015) Droplet based microfluidics: spectroscopic characterization of levofloxacin and its SERS detection. Phys Chem Chem Phys 17(33):21236–21242CrossRefGoogle Scholar
  50. 50.
    Leopold N, Lendl B (2003) A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride. J Phys Chem B 107(24):5723–5727CrossRefGoogle Scholar
  51. 51.
    Garai E et al (2015) A real-time clinical endoscopic system for intraluminal, multiplexed imaging of surface-enhanced Raman scattering nanoparticles. PLoS One 10(4):e0123185CrossRefGoogle Scholar
  52. 52.
    Premasiri WR et al (2005) Characterization of the surface enhanced Raman scattering (SERS) of bacteria. J Phys Chem B 109(1):312–320CrossRefGoogle Scholar
  53. 53.
    Kang Y et al (2013) Surface-enhanced Raman scattering (SERS) spectra of hemoglobin of mouse and rabbit with self-assembled nano-silver film. Spectrochim Acta A Mol Biomol Spectrosc 108:177–180CrossRefGoogle Scholar
  54. 54.
    Baia L et al (2006) Gold films deposited over regular arrays of polystyrene nanospheres as highly effective SERS substrates from visible to NIR. J Phys Chem B 110(47):23982–23986CrossRefGoogle Scholar
  55. 55.
    Yüksel S et al (2015) Background-free bottom-up plasmonic arrays with increased sensitivity, specificity and shelf life for SERS detection schemes. J Phys Chem C 119(24):13791–13798CrossRefGoogle Scholar
  56. 56.
    Huebner U et al (2011) Fabrication and characterization of silver deposited micro fabricated quartz arrays for surface enhanced Raman spectroscopy (SERS). Microelectron Eng 88(8):1761–1763CrossRefGoogle Scholar
  57. 57.
    Radu AI et al (2016) Toward food analytics: fast estimation of lycopene and [small beta]-carotene content in tomatoes based on surface enhanced Raman spectroscopy (SERS). Analyst 141(14):4447–4455CrossRefGoogle Scholar
  58. 58.
    Srichan C et al (2016) Highly-sensitive surface-enhanced Raman spectroscopy (SERS)-based chemical sensor using 3D graphene foam decorated with silver nanoparticles as SERS substrate. Sci Rep 6:23733CrossRefGoogle Scholar
  59. 59.
    Jiang T-T et al (2014) Enhanced photoluminescence of CdSe quantum dots by the coupling of Ag nanocube and Ag film. Chin Phys B 23(8):086102CrossRefGoogle Scholar
  60. 60.
    Zhou Q, Kim T (2016) Review of microfluidic approaches for surface-enhanced Raman scattering. Sensors Actuators B Chem 227:504–514CrossRefGoogle Scholar
  61. 61.
    Chao W, Chenxu Y (2015) Analytical characterization using surface-enhanced Raman scattering (SERS) and microfluidic sampling. Nanotechnology 26(9):092001CrossRefGoogle Scholar
  62. 62.
    Alharbi O, Xu Y, Goodacre R (2015) Detection and quantification of the opioid tramadol in urine using surface enhanced Raman scattering. Analyst 140(17):5965–5970CrossRefGoogle Scholar
  63. 63.
    Amendola G, Pelosi P, Barbini DA (2015) Determination of pesticide residues in animal origin baby foods by gas chromatography coupled with triple quadrupole mass spectrometry. J Environ Sci Health Part B 50(2):109–120CrossRefGoogle Scholar
  64. 64.
    Andreou C et al (2013) Rapid detection of drugs of abuse in saliva using surface enhanced Raman spectroscopy and microfluidics. ACS Nano 7(8):7157–7164CrossRefGoogle Scholar
  65. 65.
    Bazylak G, Nagels LJ (2002) Integrated acquisition of analytical and biopharmaceutical screening data for beta-adrenergic-drugs employing diversified macrocycle supported potentiometric detection in HPLC systems. Curr Med Chem 9(16):1547–1566CrossRefGoogle Scholar
  66. 66.
    Chung E et al (2013) Trace analysis of mercury(II) ions using aptamer-modified Au/Ag core-shell nanoparticles and SERS spectroscopy in a microdroplet channel. Lab Chip 13(2):260–266CrossRefGoogle Scholar
  67. 67.
    Gao R et al (2014) Real-time analysis of diaquat dibromide monohydrate in water with a SERS-based integrated microdroplet sensor. Nanoscale 6(15):8781–8786CrossRefGoogle Scholar
  68. 68.
    Gao RK et al (2016) Wash-free magnetic immunoassay of the PSA cancer marker using SERS and droplet microfluidics. Lab Chip 16(6):1022–1029CrossRefGoogle Scholar
  69. 69.
    Yazdi SH, White IM (2012) Optofluidic surface enhanced Raman spectroscopy microsystem for sensitive and repeatable on-site detection of chemical contaminants. Anal Chem 84(18):7992–7998CrossRefGoogle Scholar
  70. 70.
    Zhou JH et al (2012) Convenient formation of nanoparticle aggregates on microfluidic chips for highly sensitive SERS detection of biomolecules. Anal Bioanal Chem 402(4):1601–1609CrossRefGoogle Scholar
  71. 71.
    Qi N et al (2014) Surface-enhanced Raman scattering on a zigzag microfluidic chip: towards high-sensitivity detection of As(iii) ions. Anal Methods 6(12):4077–4082CrossRefGoogle Scholar
  72. 72.
    Yazdi SH, Giles KL, White IM (2013) Multiplexed detection of DNA sequences using a competitive displacement assay in a microfluidic SERRS-based device. Anal Chem 85(21):10605–10611CrossRefGoogle Scholar
  73. 73.
    Yazdi SH, White IM (2012) A nanoporous optofluidic microsystem for highly sensitive and repeatable surface enhanced Raman spectroscopy detection. Biomicrofluidics 6(1):014105CrossRefGoogle Scholar
  74. 74.
    Hwang H et al (2011) In situ dynamic measurements of the enhanced SERS signal using an optoelectrofluidic SERS platform. Lab Chip 11(15):2518–2525CrossRefGoogle Scholar
  75. 75.
    Kim KB et al (2012) Dynamic preconcentration of gold nanoparticles for surface-enhanced Raman scattering in a microfluidic system. Small 8(3):378–383CrossRefGoogle Scholar
  76. 76.
    Mungroo NA, Oliveira G, Neethirajan S (2016) SERS based point-of-care detection of food-borne pathogens. Microchim Acta 183(2):697–707CrossRefGoogle Scholar
  77. 77.
    Guo YB et al (2012) Ultrasensitive optofluidic surface-enhanced Raman scattering detection with flow-through multihole capillaries. ACS Nano 6(1):381–388CrossRefGoogle Scholar
  78. 78.
    Gao R et al (2015) Fast and sensitive detection of an anthrax biomarker using SERS-based solenoid microfluidic sensor. Biosens Bioelectron 72:230–236CrossRefGoogle Scholar
  79. 79.
    Bailey MR et al (2015) Sheath-flow microfluidic approach for combined surface enhanced Raman scattering and electrochemical detection. Anal Chem 87(8):4347–4355CrossRefGoogle Scholar
  80. 80.
    Choi J et al (2015) Integrated real-time optofluidic SERS via a liquid-core/liquid-cladding waveguide. RSC Adv 5(2):922–927CrossRefGoogle Scholar
  81. 81.
    Deng Y et al (2015) Optofluidic microsystem with quasi-3 dimensional gold plasmonic nanostructure arrays for online sensitive and reproducible SERS detection. Anal Chim Acta 863:41–48CrossRefGoogle Scholar
  82. 82.
    Lamberti A et al (2015) Metal-elastomer nanostructures for tunable SERS and easy microfluidic integration. RSC Adv 5(6):4404–4410CrossRefGoogle Scholar
  83. 83.
    Lamberti A et al (2015) Ultrasensitive Ag-coated TiO2 nanotube arrays for flexible SERS-based optofluidic devices. J Mater Chem C 3(26):6868–6875CrossRefGoogle Scholar
  84. 84.
    Patze S et al (2017) SERS as an analytical tool in environmental science: the detection of sulfamethoxazole in the nanomolar range by applying a microfluidic cartridge setup. Anal Chim Acta 949:1–7CrossRefGoogle Scholar
  85. 85.
    Uusitalo S et al (2015) Performance and flow dynamics studies of polymeric optofluidic SERS sensors. J Eur Opt Soc-Rapid Publ 10:15043CrossRefGoogle Scholar
  86. 86.
    Zhao YQ et al (2015) Plasmonic nanopillar array embedded microfluidic chips: an in situ SERS monitoring platform. J Mater Chem A 3(12):6408–6413CrossRefGoogle Scholar
  87. 87.
    Yamaguchi A et al (2016) Dielectrophoresis-enabled surface enhanced Raman scattering on gold-decorated polystyrene microparticle in micro-optofluidic devices for high-sensitive detection. Sens Actuators B-Chem 230:94–100CrossRefGoogle Scholar
  88. 88.
    Yüksel S et al (2016) Trace detection of tetrahydrocannabinol (THC) with a SERS-based capillary platform prepared by the in situ microwave synthesis of AgNPs. Anal Chim Acta 939:93–100CrossRefGoogle Scholar
  89. 89.
    Hidi IJ et al (2016) Lab-on-a-chip-surface enhanced Raman scattering combined with the standard addition method: toward the quantification of nitroxoline in spiked human urine samples. Anal Chem 88(18):9173–9180CrossRefGoogle Scholar
  90. 90.
    Muhlig A et al (2016) LOC-SERS: a promising closed system for the identification of mycobacteria. Anal Chem 88(16):7998–8004CrossRefGoogle Scholar
  91. 91.
    Kammer E et al (2015) Quantitative SERS studies by combining LOC-SERS with the standard addition method. Anal Bioanal Chem 407(29):8925–8929CrossRefGoogle Scholar
  92. 92.
    Piorek BD et al (2014) Discrete free-surface millifluidics for rapid capture and analysis of airborne molecules using surface-enhanced Raman spectroscopy. Anal Chem 86(2):1061–1066CrossRefGoogle Scholar
  93. 93.
    Wu L et al (2014) Rapid and reproducible analysis of thiocyanate in real human serum and saliva using a droplet SERS-microfluidic chip. Biosens Bioelectron 62:13–18CrossRefGoogle Scholar
  94. 94.
    Hidi IJ et al (2014) LOC-SERS: towards point-of-care diagnostic of methotrexate. Anal Methods 6(12):3943–3947CrossRefGoogle Scholar
  95. 95.
    Kammer E et al (2014) A new calibration concept for a reproducible quantitative detection based on SERS measurements in a microfluidic device demonstrated on the model analyte adenine. Phys Chem Chem Phys 16(19):9056–9063CrossRefGoogle Scholar
  96. 96.
    Cheng IF et al (2013) Rapid (<5 min) identification of pathogen in human blood by electrokinetic concentration and surface-enhanced Raman spectroscopy. Sci Rep 3:2365CrossRefGoogle Scholar
  97. 97.
    Negri P et al (2013) Ultrasensitive surface-enhanced Raman scattering flow detector using hydrodynamic focusing. Anal Chem 85(21):10159–10166CrossRefGoogle Scholar
  98. 98.
    Wu AHB (2006) A selected history and future of immunoassay development and applications in clinical chemistry. Clin Chim Acta 369(2):119–124CrossRefGoogle Scholar
  99. 99.
    Wild D (2013) Immunoassay for beginners, Chapter 1.2. In: The Immunoassay handbook (fourth edition). Elsevier, Oxford, pp 7–10CrossRefGoogle Scholar
  100. 100.
    Rubenstein KE, Schneider RS, Ullman EF (1972) “Homogeneous” enzyme immunoassay. A new immunochemical technique. Biochem Biophys Res Commun 47(4):846–851CrossRefGoogle Scholar
  101. 101.
    Darwish IA (2006) Immunoassay methods and their applications in pharmaceutical analysis: basic methodology and recent advances. Int J Biomed Sci IJBS 2(3):217–235Google Scholar
  102. 102.
    Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26(2):163–166CrossRefGoogle Scholar
  103. 103.
    Le Ru EC, Etchegoin PG (2009) Metallic colloids and other SERS substrates, Chapter 7. In: Principles of surface-enhanced Raman spectroscopy. Elsevier, Amsterdam, pp 367–413Google Scholar
  104. 104.
    Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81(2):741–766CrossRefGoogle Scholar
  105. 105.
    Jack CR Jr et al (2010) Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 9(1):119–128CrossRefGoogle Scholar
  106. 106.
    Karran E, Mercken M, Strooper BD (2011) The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 10(9):698–712CrossRefGoogle Scholar
  107. 107.
    Huang Y, Mucke L (2012) Alzheimer mechanisms and therapeutic strategies. Cell 148(6):1204–1222CrossRefGoogle Scholar
  108. 108.
    Mangialasche F et al (2010) Alzheimer’s disease: clinical trials and drug development. Lancet Neurol 9(7):702–716CrossRefGoogle Scholar
  109. 109.
    Hamley IW (2012) The amyloid beta peptide: a chemist’s perspective. Role in Alzheimer’s and fibrillization. Chem Rev 112(10):5147–5192CrossRefGoogle Scholar
  110. 110.
    Benilova I, Karran E, De Strooper B (2012) The toxic A[beta] oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat Neurosci 15(3):349–357CrossRefGoogle Scholar
  111. 111.
    Li S et al (2011) Soluble Aβ oligomers inhibit long-term potentiation through a mechanism involving excessive activation of extrasynaptic NR2B-containing NMDA receptors. J Neurosci Off J Soc Neurosci 31(18):6627–6638CrossRefGoogle Scholar
  112. 112.
    Palop JJ, Mucke L (2010) Amyloid-β induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nat Neurosci 13(7):812–818CrossRefGoogle Scholar
  113. 113.
    Grundke-Iqbal I et al (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A 83(13):4913–4917CrossRefGoogle Scholar
  114. 114.
    Kosik KS, Joachim CL, Selkoe DJ (1986) Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci U S A 83(11):4044–4048CrossRefGoogle Scholar
  115. 115.
    Zhou YL et al (2016) Detection of A beta monomers and oligomers: early diagnosis of Alzheimer’s disease. Chem Asian J 11(6):805–817CrossRefGoogle Scholar
  116. 116.
    Cohen TJ et al (2011) The acetylation of tau inhibits its function and promotes pathological tau aggregation. Nat Commun 2:252–252CrossRefGoogle Scholar
  117. 117.
    Iqbal K et al (2010) Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res 7(8):656–664CrossRefGoogle Scholar
  118. 118.
    Hoover BR et al (2010) Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron 68(6):1067–1081CrossRefGoogle Scholar
  119. 119.
    Golde TE, Eckman CB, Younkin SG (2000) Biochemical detection of A beta isoforms: implications for pathogenesis, diagnosis, and treatment of Alzheimer’s disease. BBA-Mol Basis Dis 1502(1):172–187CrossRefGoogle Scholar
  120. 120.
    Lista S et al (2014) CSF A beta 1-42 combined with neuroimaging biomarkers in the early detection, diagnosis and prediction of Alzheimer’s disease. Alzheimers Dement 10(3):381–392CrossRefGoogle Scholar
  121. 121.
    Blennow K et al (2015) Clinical utility of cerebrospinal fluid biomarkers in the diagnosis of early Alzheimer’s disease. Alzheimers Dement 11(1):58–69CrossRefGoogle Scholar
  122. 122.
    Galozzi S, Marcus K, Barkovits K (2015) Amyloid- as a biomarker for Alzheimer’s disease: quantification methods in body fluids. Expert Rev Proteomics 12(4):343–354CrossRefGoogle Scholar
  123. 123.
    El-Said WA et al (2011) Fabrication of gold nanoparticle modified ITO substrate to detect beta-amyloid using surface-enhanced Raman scattering. J Nanosci Nanotechnol 11(1):768–772CrossRefGoogle Scholar
  124. 124.
    Zengin A, Tamer U, Caykara T (2013) A SERS-based sandwich assay for ultrasensitive and selective detection of Alzheimer’s tau protein. Biomacromolecules 14(9):3001–3009CrossRefGoogle Scholar
  125. 125.
    Cherny RA et al (1999) Aqueous dissolution of Alzheimer’s disease Aβ amyloid deposits by biometal depletion. J Biol Chem 274(33):23223–23228CrossRefGoogle Scholar
  126. 126.
    Yoshiike Y, Akagi T, Takashima A (2007) Surface structure of amyloid-β fibrils contributes to cytotoxicity. Biochemistry 46(34):9805–9812CrossRefGoogle Scholar
  127. 127.
    Pesaresi M et al (2006) Plasma levels of beta-amyloid (1–42) in Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 27(6):904–905CrossRefGoogle Scholar
  128. 128.
    Zetterberg H et al (2013) Plasma tau levels in Alzheimer’s disease. Alzheimers Res Ther 5(2):9CrossRefGoogle Scholar
  129. 129.
    Demeritte T et al (2015) Hybrid graphene oxide based plasmonic-magnetic multifunctional nanoplatform for selective separation and label-free identification of Alzheimer’s disease biomarkers. ACS Appl Mater Interfaces 7(24):13693–13700CrossRefGoogle Scholar
  130. 130.
    Klein WL (2002) Aβ toxicity in Alzheimer’s disease: globular oligomers (ADDLs) as new vaccine and drug targets. Neurochem Int 41(5):345–352CrossRefGoogle Scholar
  131. 131.
    Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid [beta]-peptide. Nat Rev Mol Cell Biol 8(2):101–112CrossRefGoogle Scholar
  132. 132.
    Wang Q, Wang YM, Lu HP (2013) Revealing the secondary structural changes of amyloid beta peptide by probing the spectral fingerprint characters. J Raman Spectrosc 44(5):670–674CrossRefGoogle Scholar
  133. 133.
    Abdolrahim M et al (2015) Development of optical biosensor technologies for cardiac troponin recognition. Anal Biochem 485:1–10CrossRefGoogle Scholar
  134. 134.
    Mohammed MI, Desmulliez MPY (2011) Lab-on-a-chip based immunosensor principles and technologies for the detection of cardiac biomarkers: a review. Lab Chip 11(4):569–595CrossRefGoogle Scholar
  135. 135.
    Katrukha IA (2013) Human cardiac troponin complex. Structure and functions. Biochem Mosc 78(13):1447–1465CrossRefGoogle Scholar
  136. 136.
    Lippi G (2013) Biomarkers of myocardial ischemia in the emergency room: cardiospecific troponin and beyond. Eur J Intern Med 24(2):97–99CrossRefGoogle Scholar
  137. 137.
    Fathil MFM et al (2015) Diagnostics on acute myocardial infarction: cardiac troponin biomarkers. Biosens Bioelectron 70:209–220CrossRefGoogle Scholar
  138. 138.
    Fathil MFM et al (2016) Progression in sensing cardiac troponin biomarker charge transductions on semiconducting nanomaterials. Anal Chim Acta 935:30–43CrossRefGoogle Scholar
  139. 139.
    Han X et al (2016) Recent development of cardiac troponin I detection. ACS Sensors 1(2):106–114CrossRefGoogle Scholar
  140. 140.
    Hasanzadeh M et al (2013) Optical immunosensing of effective cardiac biomarkers on acute myocardial infarction. Trac-Trends Anal Chem 51:158–168CrossRefGoogle Scholar
  141. 141.
    Qureshi A, Gurbuz Y, Niazi JH (2012) Biosensors for cardiac biomarkers detection: a review. Sensors Actuators B Chem 171:62–76CrossRefGoogle Scholar
  142. 142.
    El-Said WA, Fouad DM, El-Safty SA (2016) Ultrasensitive label-free detection of cardiac biomarker myoglobin based on surface-enhanced Raman spectroscopy. Sensors Actuators B Chem 228:401–409CrossRefGoogle Scholar
  143. 143.
    Chon H et al (2014) SERS-based competitive immunoassay of troponin I and CK-MB markers for early diagnosis of acute myocardial infarction. Chem Commun 50(9):1058–1060CrossRefGoogle Scholar
  144. 144.
    Sacks DB, McDonald JM (1996) The pathogenesis of type II diabetes mellitus: a polygenic disease. Am J Clin Pathol 105(2):149CrossRefGoogle Scholar
  145. 145.
    Oliver NS et al (2009) Glucose sensors: a review of current and emerging technology. Diabet Med 26(3):197–210CrossRefGoogle Scholar
  146. 146.
    McCrimmon R (2008) The mechanisms that underlie glucose sensing during hypoglycaemia in diabetes. Diabet Med 25(5):513–522CrossRefGoogle Scholar
  147. 147.
    Newman JD, Turner APF (2005) Home blood glucose biosensors: a commercial perspective. Biosens Bioelectron 20(12):2435–2453CrossRefGoogle Scholar
  148. 148.
    Perez-Mayen L et al (2016) Nanomolar detection of glucose using SERS substrates fabricated with albumin coated gold nanoparticles. Nanoscale 8(23):11862–11869CrossRefGoogle Scholar
  149. 149.
    Zhang A et al (2012) Novel molecular specific detection of glucose using a Raman probe molecule with surface enhanced Raman scattering. Sci Adv Mater 4(10):1047–1054CrossRefGoogle Scholar
  150. 150.
    Lin JY et al (2014) Label-free optical detection of type II diabetes based on surface-enhanced Raman spectroscopy and multivariate analysis. J Raman Spectrosc 45(10):884–889CrossRefGoogle Scholar
  151. 151.
    Yuen JM et al (2010) Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model. Anal Chem 82(20):8382–8385CrossRefGoogle Scholar
  152. 152.
    Ma K et al (2011) In vivo, transcutaneous glucose sensing using surface-enhanced spatially offset Raman spectroscopy: multiple rats, improved hypoglycemic accuracy, low incident power, and continuous monitoring for greater than 17 days. Anal Chem 83(23):9146–9152CrossRefGoogle Scholar
  153. 153.
    Sharma B et al (2016) Bisboronic acids for selective, physiologically relevant direct glucose sensing with surface-enhanced Raman spectroscopy. J Am Chem Soc 138(42):13952–13959CrossRefGoogle Scholar
  154. 154.
    Lyandres O et al (2008) Progress toward an in vivo surface-enhanced Raman spectroscopy glucose sensor. Diabetes Technol Ther 10(4):257–265CrossRefGoogle Scholar
  155. 155.
    Torul H et al (2015) Paper membrane-based SERS platform for the determination of glucose in blood samples. Anal Bioanal Chem 407(27):8243–8251CrossRefGoogle Scholar
  156. 156.
    Mei L-P et al (2015) Simple electrodeposition of hierarchical gold-platinum nanothorns and their applications in electrocatalysis and SERS. Electrochim Acta 160:235–243CrossRefGoogle Scholar
  157. 157.
    Ceja-Fdez A et al (2014) Glucose detection using SERS with multi-branched gold nanostructures in aqueous medium. RSC Adv 4(103):59233–59241CrossRefGoogle Scholar
  158. 158.
    Torul H et al (2014) Glucose determination based on a two component self-assembled monolayer functionalized surface enhanced Raman spectroscopy (SERS) probe. Anal Methods 6(14):5097–5104CrossRefGoogle Scholar
  159. 159.
    Dong J et al (2012) Glucose-responsive multifunctional acupuncture needle: a universal SERS detection strategy of small biomolecules in vivo. Anal Methods 4(11):3879–3883CrossRefGoogle Scholar
  160. 160.
    Qi GH et al (2015) A highly sensitive SERS sensor for quantitative analysis of glucose based on the chemical etching of silver nanoparticles. J Opt 17(11)CrossRefGoogle Scholar
  161. 161.
    Dinish US et al (2011) Development of highly reproducible nanogap SERS substrates: comparative performance analysis and its application for glucose sensing. Biosens Bioelectron 26(5):1987–1992CrossRefGoogle Scholar
  162. 162.
    Qi GH et al (2016) Glucose oxidase probe as a surface-enhanced Raman scattering sensor for glucose. Anal Bioanal Chem 408(26):7513–7520CrossRefGoogle Scholar
  163. 163.
    Severyukhina AN et al (2015) Nanoplasmonic chitosan nanofibers as effective SERS substrate for detection of small molecules. ACS Appl Mater Interfaces 7(28):15466–15473CrossRefGoogle Scholar
  164. 164.
    Quyen TTB et al (2013) Au@SiO2 core/shell nanoparticle assemblage used for highly sensitive SERS-based determination of glucose and uric acid. J Raman Spectrosc 44(12):1671–1677CrossRefGoogle Scholar
  165. 165.
    Yuen C, Liu Q (2014) Towards in vivo intradermal surface enhanced Raman scattering (SERS) measurements: silver coated microneedle based SERS probe. J Biophotonics 7(9):683–689CrossRefGoogle Scholar
  166. 166.
    Al-Ogaidi I et al (2014) A gold@silica core-shell nanoparticle-based surface-enhanced Raman scattering biosensor for label-free glucose detection. Anal Chim Acta 811:76–80CrossRefGoogle Scholar
  167. 167.
    Gupta VK et al (2013) A novel glucose biosensor platform based on Ag@AuNPs modified graphene oxide nanocomposite and SERS application. J Colloid Interface Sci 406:231–237CrossRefGoogle Scholar
  168. 168.
    Wang XM et al (2016) A glucose biosensor based on detecting longitudinal surface plasmon resonance of gold nanorods. J Nanosci Nanotechnol 16(7):6925–6929CrossRefGoogle Scholar
  169. 169.
    Kong KV et al (2014) Sensitive SERS glucose sensing in biological media using alkyne functionalized boronic acid on planar substrates. Biosens Bioelectron 56:186–191CrossRefGoogle Scholar
  170. 170.
    Bi XS et al (2015) Facile and sensitive glucose sandwich assay using in situ-generated Raman reporters. Anal Chem 87(3):2016–2021CrossRefGoogle Scholar
  171. 171.
    Sun D et al (2016) Construction of highly sensitive surface-enhanced Raman scattering (SERS) nanosensor aimed for the testing of glucose in urine. RSC Adv 6(59):53800–53803CrossRefGoogle Scholar
  172. 172.
    Sun XC et al (2014) Functionalized aligned silver nanorod arrays for glucose sensing through surface enhanced Raman scattering. RSC Adv 4(45):23382–23388CrossRefGoogle Scholar
  173. 173.
    Zhang YW et al (2012) One-pot green synthesis of Ag nanoparticles-graphene nanocomposites and their applications in SERS, H2O2, and glucose sensing. RSC Adv 2(2):538–545CrossRefGoogle Scholar
  174. 174.
    Güemes M, Rahman SA, Hussain K (2015) What is a normal blood glucose? Arch Dis Child:569–574CrossRefGoogle Scholar
  175. 175.
    James TD, Phillips MD, Shinkai S (2006) The molecular recognition of saccharides. Complexation of boronic acids with saccharides. Fluorescent sensors. Modular fluorescent sensors. Other types of sensor. Other systems for saccharide recognition. In: Boronic acids in saccharide recognition. The Royal Society of Chemistry, Cambridge, pp 3–176CrossRefGoogle Scholar
  176. 176.
    Wu L, Qu XG (2015) Cancer biomarker detection: recent achievements and challenges. Chem Soc Rev 44(10):2963–2997CrossRefGoogle Scholar
  177. 177.
    McAughtrie S, Faulds K, Graham D (2014) Surface enhanced Raman spectroscopy (SERS): potential applications for disease detection and treatment. J Photochem Photobiol C Photochem Rev 21:40–53CrossRefGoogle Scholar
  178. 178.
    Ye SJ et al (2014) Enzyme-based signal amplification of surface-enhanced Raman scattering in cancer-biomarker detection. Trac-Trends Anal Chem 55:43–54CrossRefGoogle Scholar
  179. 179.
    Bernard CPW, Stewart W (2014) World cancer report 2014. International Agency for Research on Cancer (IARC), Lyon, p 633Google Scholar
  180. 180.
    Gam L-H (2012) Breast cancer and protein biomarkers. World J Exp Med 2(5):86–91CrossRefGoogle Scholar
  181. 181.
    Li M et al (2013) Three-dimensional hierarchical plasmonic nano-architecture enhanced surface-enhanced Raman scattering immunosensor for cancer biomarker detection in blood plasma. ACS Nano 7(6):4967–4976CrossRefGoogle Scholar
  182. 182.
    Dinish US et al (2014) Sensitive multiplex detection of serological liver cancer biomarkers using SERS-active photonic crystal fiber probe. J Biophotonics 7(11–12):956–965CrossRefGoogle Scholar
  183. 183.
    Vaidyanathan R et al (2015) A multiplexed device based on tunable nanoshearing for specific detection of multiple protein biomarkers in serum. Sci Rep 5:9756CrossRefGoogle Scholar
  184. 184.
    Wang Y et al (2015) Enabling rapid and specific surface-enhanced Raman scattering immunoassay using nanoscaled surface shear forces. ACS Nano 9(6):6354–6362CrossRefGoogle Scholar
  185. 185.
    Mandal S et al (2011) Synthesis and multidisciplinary characterization of polyelectrolyte multilayer-coated nanogold with improved stability toward aggregation. Colloid Polym Sci 289(3):269–280CrossRefGoogle Scholar
  186. 186.
    Beqa L et al (2011) Gold nano-popcorn attached SWCNT hybrid nanomaterial for targeted diagnosis and photothermal therapy of human breast cancer cells. ACS Appl Mater Interfaces 3(9):3316–3324CrossRefGoogle Scholar
  187. 187.
    Yang J et al (2012) Distinguishing breast cancer cells using surface-enhanced Raman scattering. Anal Bioanal Chem 402(3):1093–1100CrossRefGoogle Scholar
  188. 188.
    Zhang P et al (2014) Novel nitrocellulose membrane substrate for efficient analysis of circulating tumor cells coupled with surface-enhanced Raman scattering imaging. ACS Appl Mater Interfaces 6(1):370–376CrossRefGoogle Scholar
  189. 189.
    Fales AM, Yuan H, Vo-Dinh T (2013) Cell-penetrating peptide enhanced intracellular Raman imaging and photodynamic therapy. Mol Pharm 10(6):2291–2298CrossRefGoogle Scholar
  190. 190.
    Lee S et al (2014) Rapid and sensitive phenotypic marker detection on breast cancer cells using surface-enhanced Raman scattering (SERS) imaging. Biosens Bioelectron 51:238–243CrossRefGoogle Scholar
  191. 191.
    Freitag I et al (2016) Recognition of tumor cells by immuno-SERS-markers in a microfluidic chip at continuous flow. Analyst 141(21):5986–5989CrossRefGoogle Scholar
  192. 192.
    Jimenez de Aberasturi D et al (2016) Surface enhanced Raman scattering encoded gold nanostars for multiplexed cell discrimination. Chem Mater 28(18):6779–6790CrossRefGoogle Scholar
  193. 193.
    Shi ML et al (2016) SERS assay of telomerase activity at single-cell level and colon cancer tissues via quadratic signal amplification. Biosens Bioelectron 77:673–680CrossRefGoogle Scholar
  194. 194.
    Lee M et al (2011) Highly reproducible immunoassay of cancer markers on a gold-patterned microarray chip using surface-enhanced Raman scattering imaging. Biosens Bioelectron 26(5):2135–2141CrossRefGoogle Scholar
  195. 195.
    Perumal J et al (2015) SERS-based quantitative detection of ovarian cancer prognostic factor haptoglobin. Int J Nanomedicine 10:1831–1840CrossRefGoogle Scholar
  196. 196.
    Feng SY et al (2011) Study on gastric cancer blood plasma based on surface-enhanced Raman spectroscopy combined with multivariate analysis. Sci China Life Sci 54(9):828–834CrossRefGoogle Scholar
  197. 197.
    Feng SY et al (2010) Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis. Biosens Bioelectron 25(11):2414–2419CrossRefGoogle Scholar
  198. 198.
    Xie H-n et al (2012) Tracking bisphosphonates through a 20 mm thick porcine tissue by using surface-enhanced spatially offset Raman spectroscopy. Angew Chem Int Ed 51(34):8509–8511CrossRefGoogle Scholar
  199. 199.
    Yang TX et al (2014) Facile and label-free detection of lung cancer biomarker in urine by magnetically assisted surface-enhanced Raman scattering. ACS Appl Mater Interfaces 6(23):20985–20993CrossRefGoogle Scholar
  200. 200.
    Wang H-N et al (2016) Multiplexed detection of microRNA biomarkers using SERS-based inverse molecular sentinel (iMS) nanoprobes. J Phys Chem C 120(37):21047–21055CrossRefGoogle Scholar
  201. 201.
    Guven B et al (2014) SERS-based direct and sandwich assay methods for mir-21 detection. Analyst 139(5):1141–1147CrossRefGoogle Scholar
  202. 202.
    Choi S et al (2015) Biochemical investigations of human papillomavirus-infected cervical fluids. Microsc Res Tech 78(3):200–206CrossRefGoogle Scholar
  203. 203.
    Granger JH et al (2013) Toward development of a surface-enhanced Raman scattering (SERS)-based cancer diagnostic immunoassay panel. Analyst 138(2):410–416CrossRefGoogle Scholar
  204. 204.
    Domenici F, Bizzarri AR, Cannistraro S (2012) Surface-enhanced Raman scattering detection of wild-type and mutant p53 proteins at very low concentration in human serum. Anal Biochem 421(1):9–15CrossRefGoogle Scholar
  205. 205.
    Cepeda-Pérez E et al (2016) SERS-active Au/SiO(2) clouds in powder for rapid ex vivo breast adenocarcinoma diagnosis. Biomed Opt Express 7(6):2407–2418CrossRefGoogle Scholar
  206. 206.
    Wang X-P et al (2016) iSERS microscopy guided by wide field immunofluorescence: analysis of HER2 expression on normal and breast cancer FFPE tissue sections. Analyst 141(17):5113–5119CrossRefGoogle Scholar
  207. 207.
    Sinha L et al (2015) Quantification of the binding potential of cell-surface receptors in fresh excised specimens via dual-probe modeling of SERS nanoparticles. Sci Rep 5:8582CrossRefGoogle Scholar
  208. 208.
    Song J et al (2015) Plasmonic vesicles of amphiphilic nanocrystals: optically active multifunctional platform for cancer diagnosis and therapy. Acc Chem Res 48(9):2506–2515CrossRefGoogle Scholar
  209. 209.
    Wood BR et al (2003) Raman imaging of hemozoin within the food vacuole of Plasmodium falciparum trophozoites. FEBS Lett 554(3):247–252CrossRefGoogle Scholar
  210. 210.
    Garrett NL et al (2015) Bio-sensing with butterfly wings: naturally occurring nano-structures for SERS-based malaria parasite detection. Phys Chem Chem Phys 17(33):21164–21168CrossRefGoogle Scholar
  211. 211.
    Chen FN et al (2016) Direct detection of malaria infected red blood cells by surface enhanced Raman spectroscopy. Nanomed Nanotechnol Biol Med 12(6):1445–1451CrossRefGoogle Scholar
  212. 212.
    Chen KR et al (2016) Review of surface enhanced Raman spectroscopy for malaria diagnosis and a new approach for the detection of single parasites in the ring stage. IEEE J Sel Top Quantum Electron 22(4)CrossRefGoogle Scholar
  213. 213.
    Chen KR et al (2016) Towards ultrasensitive malaria diagnosis using surface enhanced Raman spectroscopy. Sci Rep 6Google Scholar
  214. 214.
    Kaminska A et al (2015) Detection of hepatitis B virus antigen from human blood: SERS immunoassay in a microfluidic system. Biosens Bioelectron 66:461–467CrossRefGoogle Scholar
  215. 215.
    Li M et al (2013) Plasmonic nanorice antenna on triangle nanoarray for surface-enhanced Raman scattering detection of hepatitis B virus DNA. Anal Chem 85(4):2072–2078CrossRefGoogle Scholar
  216. 216.
    Yao CK et al (2012) Spatially reinforced nano-cavity array as the SERS-active substrate for detecting hepatitis virus core antigen at low concentrations. Sens Actuators B Chem 174:478–484CrossRefGoogle Scholar
  217. 217.
    Wu XM et al (2015) Differentiation and classification of bacteria using vancomycin functionalized silver nanorods array based surface-enhanced Raman spectroscopy and chemometric analysis. Talanta 139:96–103CrossRefGoogle Scholar
  218. 218.
    Wu X et al (2014) Culture-free diagnostics of Pseudomonas aeruginosa infection by silver nanorod array based SERS from clinical sputum samples. Nanomedicine 10(8):1863–1870CrossRefGoogle Scholar
  219. 219.
    Avci E et al (2015) Discrimination of urinary tract infection pathogens by means of their growth profiles using surface enhanced Raman scattering. Anal Bioanal Chem 407(27):8233–8241CrossRefGoogle Scholar
  220. 220.
    Premasiri WR et al (2016) The biochemical origins of the surface-enhanced Raman spectra of bacteria: a metabolomics profiling by SERS. Anal Bioanal Chem 408(17):4631–4647CrossRefGoogle Scholar
  221. 221.
    Marotta NE, Bottomley LA (2010) Surface-enhanced Raman scattering of bacterial cell culture growth media. Appl Spectrosc 64(6):601–606CrossRefGoogle Scholar
  222. 222.
    Watson I et al (1997) Therapeutic drug monitoring [Editorial]. Ther Drug Monit 19(2):125CrossRefGoogle Scholar
  223. 223.
    Muller DM, Rentsch KM (2010) Therapeutic drug monitoring by LC-MS-MS with special focus on anti-infective drugs. Anal Bioanal Chem 398(6):2573–2594CrossRefGoogle Scholar
  224. 224.
    Humble RM et al (2015) Therapeutic drug monitoring of pentobarbital: experience at an Academic Medical Center. Ther Drug Monit 37(6):783–791CrossRefGoogle Scholar
  225. 225.
    Carlier M et al (2015) Assays for therapeutic drug monitoring of beta-lactam antibiotics: a structured review. Int J Antimicrob Agents 46(4):367–375CrossRefGoogle Scholar
  226. 226.
    Baranowska I, Magiera S, Baranowski J (2013) Clinical applications of fast liquid chromatography: a review on the analysis of cardiovascular drugs and their metabolites. J Chromatogr B Analyt Technol Biomed Life Sci 927:54–79CrossRefGoogle Scholar
  227. 227.
    Aucella F et al (2013) Liquid chromatography-tandem mass spectrometry method as the golden standard for therapeutic drug monitoring in renal transplant. J Pharm Biomed Anal 86:123–126CrossRefGoogle Scholar
  228. 228.
    Young J et al (2015) A novel immunoassay to measure total serum lymphotoxin-alpha levels in the presence of an anti-LT alpha therapeutic antibody. J Immunol Methods 424:91–99CrossRefGoogle Scholar
  229. 229.
    Song ZR et al (2016) A validated chemiluminescence immunoassay for methotrexate (MTX) and its application in a pharmacokinetic study. Anal Methods 8(1):162–170CrossRefGoogle Scholar
  230. 230.
    Krieg AK, Gauglitz G (2015) Ultrasensitive label-free immunoassay for optical determination of amitriptyline and related tricyclic antidepressants in human serum. Anal Chem 87(17):8845–8850CrossRefGoogle Scholar
  231. 231.
    Guerriero E et al (2014) Unexpected overestimation of methotrexate plasma concentrations: analysis of a single center pediatric population. Ther Drug Monit 36(4):499–504CrossRefGoogle Scholar
  232. 232.
    Widemann BC, Adamson PC (2006) Understanding and managing methotrexate nephrotoxicity. Oncologist 11(6):694–703CrossRefGoogle Scholar
  233. 233.
    Fornasaro S et al (2016) Toward SERS-based point-of-care approaches for therapeutic drug monitoring: the case of methotrexate. Faraday Discuss 187:485–499CrossRefGoogle Scholar
  234. 234.
    Crews KR et al (2004) High-dose methotrexate pharmacokinetics and outcome of children and young adults with osteosarcoma. Cancer 100(8):1724–1733CrossRefGoogle Scholar
  235. 235.
    Yuen C, Zheng W, Huang ZW (2010) Low-level detection of anti-cancer drug in blood plasma using microwave-treated gold-polystyrene beads as surface-enhanced Raman scattering substrates. Biosens Bioelectron 26(2):580–584CrossRefGoogle Scholar
  236. 236.
    Pletz M, Lipman J (2013) Clinical measures for increased creatinine clearances and suboptimal antibiotic dosing. Intensive Care Med 39(7):1322–1324CrossRefGoogle Scholar
  237. 237.
    McKeating KS et al (2016) High throughput LSPR and SERS analysis of aminoglycoside antibiotics. Analyst 141(17):5120–5126CrossRefGoogle Scholar
  238. 238.
    Liu SP et al (2015) Raman spectroscopy measurement of levofloxacin lactate in blood using an optical fiber nano-probe. J Raman Spectrosc 46(2):197–201CrossRefGoogle Scholar
  239. 239.
    Xia TH et al (2014) Improving the quantitative accuracy of surface-enhanced Raman spectroscopy by the combination of microfluidics with a multiplicative effects model. Anal Methods 6(7):2363–2370CrossRefGoogle Scholar
  240. 240.
    Villa JEL, Poppi RJ (2016) A portable SERS method for the determination of uric acid using a paper-based substrate and multivariate curve resolution. Analyst 141(6):1966–1972CrossRefGoogle Scholar
  241. 241.
    Mamian-Lopez MB, Poppi RJ (2013) Standard addition method applied to the urinary quantification of nicotine in the presence of cotinine and anabasine using surface enhanced Raman spectroscopy and multivariate curve resolution. Anal Chim Acta 760:53–59CrossRefGoogle Scholar
  242. 242.
    Mamian-Lopez MB, Poppi RJ (2013) Quantification of moxifloxacin in urine using surface-enhanced Raman spectroscopy (SERS) and multivariate curve resolution on a nanostructured gold surface. Anal Bioanal Chem 405(24):7671–7677CrossRefGoogle Scholar
  243. 243.
    Subaihi A et al (2016) Rapid, accurate, and quantitative detection of propranolol in multiple human biofluids via surface-enhanced Raman scattering. Anal Chem 88(22):10884–10892CrossRefGoogle Scholar
  244. 244.
    Berger AG, Restaino SM, White IM (2017) Vertical-flow paper SERS system for therapeutic drug monitoring of flucytosine in serum. Anal Chim Acta 949:59–66CrossRefGoogle Scholar
  245. 245.
    Sun F et al (2016) Hierarchical zwitterionic modification of a SERS substrate enables real-time drug monitoring in blood plasma. Nat Commun 7:9Google Scholar
  246. 246.
    Ma YM et al (2016) Surface-enhanced Raman spectroscopy on liquid interfacial nanoparticle arrays for multiplex detecting drugs in urine. Anal Chem 88(16):8145–8151CrossRefGoogle Scholar
  247. 247.
    Robinson AM et al (2015) The development of “fab-chips” as low-cost, sensitive surface-enhanced Raman spectroscopy (SERS) substrates for analytical applications. Analyst 140(3):779–785CrossRefGoogle Scholar
  248. 248.
    Dong RL et al (2015) Detection and direct readout of drugs in human urine using dynamic surface-enhanced Raman spectroscopy and support vector machines. Anal Chem 87(5):2937–2944CrossRefGoogle Scholar
  249. 249.
    Han Z et al (2015) Portable kit for identification and detection of drugs in human urine using surface-enhanced Raman spectroscopy. Anal Chem 87(18):9500–9506CrossRefGoogle Scholar
  250. 250.
    Bisswanger H (2014) Enzyme assays. Perspect Sci 1(1–6):41–55CrossRefGoogle Scholar
  251. 251.
    Zong SF et al (2014) Colorimetry and SERS dual-mode detection of telomerase activity: combining rapid screening with high sensitivity. Nanoscale 6(3):1808–1816CrossRefGoogle Scholar
  252. 252.
    Zong S et al (2014) Assessing telomere length using surface enhanced Raman scattering. Sci Rep 4:1–8Google Scholar
  253. 253.
    Zong S et al (2013) Ultrasensitive telomerase activity detection by telomeric elongation controlled surface enhanced Raman scattering. Small 9(24):4215–4220CrossRefGoogle Scholar
  254. 254.
    März A et al (2011) Detection of thiopurine methyltransferase activity in lysed red blood cells by means of lab-on-a-chip surface enhanced Raman spectroscopy (LOC-SERS). Anal Bioanal Chem 400(9):2755–2761CrossRefGoogle Scholar
  255. 255.
    Wang Y et al (2015) A SERS protocol as a potential tool to access 6-mercaptopurine release accelerated by glutathione-S-transferase. Analyst 140(22):7578–7585CrossRefGoogle Scholar
  256. 256.
    Han GM et al (2014) Label-free surface-enhanced Raman scattering imaging to monitor the metabolism of antitumor drug 6-mercaptopurine in living cells. Anal Chem 86(23):11503–11507CrossRefGoogle Scholar
  257. 257.
    Wu ZT et al (2015) A simple and universal “turn-on” detection platform for proteases based on surface enhanced Raman scattering (SERS). Biosens Bioelectron 65:375–381CrossRefGoogle Scholar
  258. 258.
    Yazgan NN et al (2010) A high sensitive assay platform based on surface-enhanced Raman scattering for quantification of protease activity. Talanta 82(2):631–639CrossRefGoogle Scholar
  259. 259.
    Yang L et al (2016) SERS determination of protease through a particle-on-a-film configuration constructed by electrostatic assembly in an enzymatic hydrolysis reaction. RSC Adv 6(93):90120–90125CrossRefGoogle Scholar
  260. 260.
    Chen LX, Fu XL, Li JH (2013) Ultrasensitive surface-enhanced Raman scattering detection of trypsin based on anti-aggregation of 4-mercaptopyridine-functionalized silver nanoparticles: an optical sensing platform toward proteases. Nanoscale 5(13):5905–5911CrossRefGoogle Scholar
  261. 261.
    Wu ZT et al (2013) A “turn-off” SERS-based detection platform for ultrasensitive detection of thrombin based on, enzymatic assays. Biosens Bioelectron 44:10–15CrossRefGoogle Scholar
  262. 262.
    Cong Y-S, Wright WE, Shay JW (2002) Human telomerase and its regulation. Microbiol Mol Biol Rev 66(3):407–425CrossRefGoogle Scholar
  263. 263.
    Dhaene K, Van Marck E, Parwaresch R (2000) Telomeres, telomerase and cancer: an up-date. Virchows Arch Int J Pathol 437(1):1–16CrossRefGoogle Scholar
  264. 264.
    Klingelhutz AJ (1997) Telomerase activation and cancer. J Mol Med JMM 75(1):45–49CrossRefGoogle Scholar
  265. 265.
    Smekalova EM et al (2012) Telomerase RNA biosynthesis and processing. Biochem Mosc 77(10):1120–1128CrossRefGoogle Scholar
  266. 266.
    Lopez-Otin C, Matrisian LM (2007) Emerging roles of proteases in tumour suppression. Nat Rev Cancer 7(10):800–808CrossRefGoogle Scholar
  267. 267.
    Duffy MJ (1992) The role of proteolytic enzymes in cancer invasion and metastasis. Clin Exp Metastasis 10(3):145–155CrossRefGoogle Scholar
  268. 268.
    Anastasopoulos JA, Beobide AS, Voyiatzis GA (2013) Quantitative surface enhanced Raman scattering measurements at the early stage of active agent release processes. J Raman Spectrosc 44(3):401–405CrossRefGoogle Scholar
  269. 269.
    Chen H et al (2014) SERS-fluorescence monitored drug release of a redox-responsive nanocarrier based on graphene oxide in tumor cells. ACS Appl Mater Interfaces 6(20):17526–17533CrossRefGoogle Scholar
  270. 270.
    El-Said WA, Choi JW (2014) In-situ detection of neurotransmitter release from PC12 cells using surface enhanced Raman spectroscopy. Biotechnol Bioprocess Eng 19(6):1069–1076CrossRefGoogle Scholar
  271. 271.
    Fang W et al (2014) pH-controllable drug carrier with SERS activity for targeting cancer cells. Biosens Bioelectron 57:10–15CrossRefGoogle Scholar
  272. 272.
    Ganbold EO et al (2013) Raman spectroscopy of combinatory anticancer drug release from gold nanoparticles inside a single leukemia cell. J Raman Spectrosc 44(5):675–679CrossRefGoogle Scholar
  273. 273.
    Gautier J et al (2013) SERS spectroscopic approach to study doxorubicin complexes with Fe2+ ions and drug release from SPION-based nanocarriers. Analyst 138(24):7354–7361CrossRefGoogle Scholar
  274. 274.
    Huang J et al (2013) Tracking the intracellular drug release from graphene oxide using surface-enhanced Raman spectroscopy. Nanoscale 5(21):10591–10598CrossRefGoogle Scholar
  275. 275.
    Ilkhani H et al (2016) Nanostructured SERS-electrochemical biosensors for testing of anticancer drug interactions with DNA. Biosens Bioelectron 80:257–264CrossRefGoogle Scholar
  276. 276.
    Liang LJ et al (2015) In situ surface-enhanced Raman scattering spectroscopy exploring molecular changes of drug-treated cancer cell nucleus. Anal Chem 87(4):2504–2510CrossRefGoogle Scholar
  277. 277.
    Liu L et al (2016) Smart surface-enhanced Raman scattering traceable drug delivery systems. Nanoscale 8(25):12803–12811CrossRefGoogle Scholar
  278. 278.
    Masetti M et al (2015) Revealing DNA interactions with exogenous agents by surface-enhanced Raman scattering. J Am Chem Soc 137(1):469–476CrossRefGoogle Scholar
  279. 279.
    Nieciecka D, Krolikowska A, Krysinski P (2015) Probing the interactions of mitoxantrone with biomimetic membranes with electrochemical and spectroscopic techniques. Electrochim Acta 165:430–442CrossRefGoogle Scholar
  280. 280.
    Ock K et al (2012) Real-time monitoring of glutathione-triggered thiopurine anticancer drug release in live cells investigated by surface-enhanced Raman scattering. Anal Chem 84(5):2172–2178CrossRefGoogle Scholar
  281. 281.
    Ock KS et al (2012) Label-free Raman spectroscopy for accessing intracellular anticancer drug release on gold nanoparticles. Analyst 137(12):2852–2859CrossRefGoogle Scholar
  282. 282.
    Tian LM, Gandra N, Singamaneni S (2013) Monitoring controlled release of payload from gold nanocages using surface enhanced Raman scattering. ACS Nano 7(5):4252–4260CrossRefGoogle Scholar
  283. 283.
    Yang J et al (2012) Tracking multiplex drugs and their dynamics in living cells using the label-free surface-enhanced Raman scattering technique. Mol Pharm 9(4):842–849CrossRefGoogle Scholar
  284. 284.
    Yang J et al (2014) Dual-mode tracking of tumor-cell-specific drug delivery using fluorescence and label-free SERS techniques. Biosens Bioelectron 51:82–89CrossRefGoogle Scholar
  285. 285.
    Zong SF et al (2014) Telomerase triggered drug release using a SERS traceable nanocarrier. IEEE Trans Nanobioscience 13(1):55–60CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Izabella J. Jahn
    • 3
  • Andreea I. Radu
    • 3
  • Karina Weber
    • 4
  • Dana Cialla-May
    • 4
  • Juergen Popp
    • 1
    • 2
    Email author
  1. 1.Institute of Photonic TechnologyJenaGermany
  2. 2.Institute of Physical Chemistry and Abbe Center of PhotonicsJenaGermany
  3. 3.Leibniz Institute of Photonic Technology JenaJenaGermany
  4. 4.Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of PhotonicsJenaGermany

Personalised recommendations