Quartz Crystal Resonator for Real-Time Characterization of Nanoscale Phenomena Relevant for Biomedical Applications

  • Luis Armando Carvajal Ahumada
  • Oscar Leonardo Herrera Sandoval
  • Nuria Peña Perez
  • Felipe Andrés Silva Gómez
  • Mariano Alberto García-Vellisca
  • José Javier Serrano Olmedo
Chapter

Abstract

Thickness Shear Mode (TSM) sensors and, in particular, Quartz Crystal Resonator (QCR) sensors are very efficient systems because of their elevated accuracy, sensitivity, and biofunctionalization capacity. They are highly reliable when measuring deposited samples, both for gaseous and liquid media. Moreover, they can be used for real time monitoring and their manufacturing cost is relatively low. These characteristics explain the many possible applications of QCR sensors as biosensors. In this chapter, recent remarkable applications of QCRs in different contexts are described. Applications of these sensors range from medical an environmental monitoring applications, to mixed applications with other techniques such as Atomic Force Microscopy (AFM), Surface Plasmon Resonance (SPR) or electrochemical in order to improve the sensor system response.

References

  1. 1.
    Sauerbrey G (1959) Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z Phys 155(2):206–222Google Scholar
  2. 2.
    Carvajal Ahumada LA, Peña Pérez N, Herrera Sandoval OL, del Pozo Guerrero F, Serrano Olmedo JJ (2016) A new way to find dielectric properties of liquid sample using the quartz crystal resonator (QCR). Sensors Actuators A Phys 239:153–160Google Scholar
  3. 3.
    Keiji Kanazawa K, Gordon JG (1985) The oscillation frequency of a quartz resonator in contact with liquid. Anal Chim Acta 175:99–105Google Scholar
  4. 4.
    Melroy O, Kanazawa K, Gordon JG, Buttry D (1986) Direct determination of the mass of an underpotentially deposited monolayer of lead on gold. Langmuir 2(6):697–700Google Scholar
  5. 5.
    Dixon MC (2008) Quartz crystal microbalance with dissipation monitoring: enabling real-time characterization of biological materials and their interactions. J Biomol Tech 19(3):151–158Google Scholar
  6. 6.
    Cassiède M, Daridon J-L, Paillol JH, Pauly J (2011) Characterization of the behaviour of a quartz crystal resonator fully immersed in a Newtonian liquid by impedance analysis. Sensors Actuators A Phys 167(2):317–326Google Scholar
  7. 7.
    Arnau A (2008) A review of Interface electronic systems for AT-cut quartz crystal microbalance applications in liquids. Sensors 8(1):370–411Google Scholar
  8. 8.
    Johannsmann D (2015) The quartz crystal microbalance in soft matter research, vol 53, 1st edn. Springer, ChamGoogle Scholar
  9. 9.
    Montagut Y, Narbon J, Jiménez Y, March C, Montoya A, Arnau A (2011) QCM technology in biosensors, Biosensors - Emerging Materials and Applications, Prof. Pier Andrea Serra (Ed.), InTech, DOI:  https://doi.org/10.5772/17991. Available from: https://www.intechopen.com/books/biosensors-emerging-materials-and-applications/qcm-technology-in-biosensorsCrossRefGoogle Scholar
  10. 10.
    Chen Q, Tang W, Wang D, Wu X, Li N, Liu F (2010) Amplified QCM-D biosensor for protein based on aptamer-functionalized gold nanoparticles. Biosens Bioelectron 26(2):575–579Google Scholar
  11. 11.
    Jaruwongrungsee K, Waiwijit U, Wisitsoraat A, Sangworasil M, Pintavirooj C, Tuantranont A (2015) Real-time multianalyte biosensors based on interference-free multichannel monolithic quartz crystal microbalance. Biosens Bioelectron 67:576–581Google Scholar
  12. 12.
    García-Martinez G et al (2011) Development of a mass sensitive quartz crystal microbalance (QCM)-based DNA biosensor using a 50 MHz electronic oscillator circuit. Sensors (Basel) 11(8):7656–7664Google Scholar
  13. 13.
    Cernosek RW, Martin SJ, Hillman AR, Bandey HL (1998) Comparison of lumped-element and transmission-line models for thickness-shear-mode quartz resonator sensors. IEEE Trans Ultrason Ferroelectr Freq Control 45(5):1399–1407Google Scholar
  14. 14.
    Jakoby B, Art G, Bastemeijer J (2005) Novel analog readout electronics for microacoustic thickness shear-mode sensors. IEEE Sens J 5(5):1106–1111Google Scholar
  15. 15.
    Ferreira GNM, da-Silva A-C, Tomé B (2009) Acoustic wave biosensors: physical models and biological applications of quartz crystal microbalance. Trends Biotechnol 27(12):689–697Google Scholar
  16. 16.
    Gu Y, Li Q, Xu B-J, Zhao Z (2014) Vibration analysis of a new polymer quartz piezoelectric crystal sensor for detecting characteristic materials of volatility liquid. Chin Phys B 23(1):17804Google Scholar
  17. 17.
    Kikuchi M, Shiratori S (2005) Quartz crystal microbalance (QCM) sensor for CH 3 SH gas by using polyelectrolyte-coated sol–gel film. Sensors Actuators B Chem 108:564–571Google Scholar
  18. 18.
    Nilsson S, Björefors F, Robinson ND (2013) Electrochemical quartz crystal microbalance study of polyelectrolyte film growth under anodic conditions. Appl Surf Sci 280:783–790Google Scholar
  19. 19.
    Dell’Atti D et al (2007) Development of combined DNA-based piezoelectric biosensors for the simultaneous detection and genotyping of high risk human papilloma virus strains. Clin Chim Acta 383(1–2):140–146Google Scholar
  20. 20.
    Dewar R, Joyce M (2005) The quartz crystal microbalance as a microviscometer for improved rehabilitation therapy of dysphagic patients. Conf Proc IEEE Eng Med Biol Soc 3:2511–2515Google Scholar
  21. 21.
    Höök F, Kasemo B, Nylander T, Fant C, Sott K, Elwing H (2001) Variations in coupled water, viscoelastic properties, and film thickness of a Mefp-1 protein film during adsorption and cross-linking: a quartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study. Anal Chem 73(24):5796–5804Google Scholar
  22. 22.
    Lucklum R, Hauptmann P (2006) Acoustic microsensors – the challenge behind microgravimetry. Anal Bioanal Chem 384(3):667–682Google Scholar
  23. 23.
    Deng T, Wang H, Li J-S, Shen G-L, Yu R-Q (2005) A novel biosensing interfacial design based on the assembled multilayers of the oppositely charged polyelectrolytes. Anal Chim Acta 532(2):137–144Google Scholar
  24. 24.
    Fatisson J, Azari F, Tufenkji N (2011) Real-time QCM-D monitoring of cellular responses to different cytomorphic agents. Biosens Bioelectron 26(7):3207–3212Google Scholar
  25. 25.
    Lederer T, Stehrer BP, Bauer S, Jakoby B, Hilber W (2011) Utilizing a high fundamental frequency quartz crystal resonator as a biosensor in a digital microfluidic platform. Sens Actuators A Phys 172(1):161–168Google Scholar
  26. 26.
    Wolfbeis OS (2007) Piezoelectric sensors, vol 5. Springer, Berlin/HeidelbergGoogle Scholar
  27. 27.
    Granstaff VE, Martin SJ (1994) Characterization of a thickness-shear mode quartz resonator with multiple nonpiezoelectric layers. J Appl Phys 75(3):1319Google Scholar
  28. 28.
    Rosenbaum J (1988) Bulk acoustic wave theory and devices. Artech Print on Demand, BostonGoogle Scholar
  29. 29.
    Lucklum R (2000) The Δf–ΔR QCM technique: an approach to an advanced sensor signal interpretation. Electrochim Acta 45(22–23):3907–3916Google Scholar
  30. 30.
    Calvo EJ, Etchenique R, Bartlett PN, Singhal K, Santamaria C (1997) Quartz crystal impedance studies at 10 MHz of viscoelastic liquids and films. Faraday Discuss 107:141–157Google Scholar
  31. 31.
    Tao W, Lin P, Ai Y, Wang H, Ke S, Zeng X (2016) Multichannel quartz crystal microbalance array: fabrication, evaluation, application in biomarker detection. Anal Biochem 494:85–92Google Scholar
  32. 32.
    Vavra KC, Yu G, Josowicz M, Janata J (2011) Magnetic quartz crystal microbalance: Magneto-acoustic parameters. J Appl Phys 110(1):13905Google Scholar
  33. 33.
    Cho N-J, D’Amour JN, Stalgren J, Knoll W, Kanazawa K, Frank CW (2007) Quartz resonator signatures under Newtonian liquid loading for initial instrument check. J Colloid Interface Sci 315(1):248–254Google Scholar
  34. 34.
    Cassiède M, Paillol JH, Pauly J, Daridon J-L (2010) Electrical behaviour of AT-cut quartz crystal resonators as a function of overtone number. Sensors Actuators A Phys 159(2):174–183Google Scholar
  35. 35.
    Carvajal Ahumada LA, González MXR, Sandoval OLH, Olmedo JJS (2016) Evaluation of hyaluronic acid dilutions at different concentrations using a Quartz Crystal Resonator (QCR) for the potential diagnosis of arthritic diseases. Sensors (Basel) 16(11):1959Google Scholar
  36. 36.
    Chen K, Tan Z, Nie L, Yao S (1995) Principal component analysis applied to admittance spectra of a quartz-crystal microbalance in contact with a liquid phase. Analyst 120(7):1885Google Scholar
  37. 37.
    Ferrari V, Marioli D, Taroni A (2003) ACC oscillator for in-liquid quartz microbalance sensors. In: Proceedings of IEEE sensors 2003 (IEEE Cat. No.03CH37498). pp 849–854. http://ieeexplore.ieee.org/document/1279063/
  38. 38.
    Gerdon AE, Wright DW, Cliffel DE (2007) Quartz crystal microbalance characterization of nanostructure assemblies in biosensing. In: Nanotechnologies for the life sciences. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  39. 39.
    Ansorena P, Zuzuarregui A, Pérez-Lorenzo E, Mujika M, Arana S (2011) Comparative analysis of QCM and SPR techniques for the optimization of immobilization sequences. Sensors Actuators B Chem 155(2):667–672Google Scholar
  40. 40.
    Biolin Scientific Holding AB, “Q-Sense,” (2016) [Online]. Available: http://www.biolinscientific.com/q-sense/products/
  41. 41.
    Rodahl M, Kasemo B (1996) A simple setup to simultaneously measure the resonant frequency and the absolute dissipation factor of a quartz crystal microbalance. Rev Sci Instrum 67(9):3238Google Scholar
  42. 42.
    Rodahl M, Höök F, Kasemo B (1996) QCM Operation in Liquids: an explanation of measured variations in frequency and Q factor with liquid conductivity. Anal Chem 68(13):2219–2227Google Scholar
  43. 43.
    Fredriksson C, Kihlman S, Rodahl M, Kasemo B (1998) The piezoelectric quartz crystal mass and dissipation sensor: a means of studying cell adhesion. Langmuir 14(2):248–251Google Scholar
  44. 44.
    Rodahl M, Kasemo B (1996) On the measurement of thin liquid overlayers with the quartz-crystal microbalance. Sensors Actuators A Phys 54(1–3):448–456Google Scholar
  45. 45.
    Reviakine I, Johannsmann D, Richter RP (2011) Hearing what you cannot see and visualizing what you hear: interpreting quartz crystal microbalance data from solvated interfaces. Anal Chem 83(23):8838–8848Google Scholar
  46. 46.
    Salam F, Uludag Y, Tothill IE (2013) Real-time and sensitive detection of salmonella typhimurium using an automated quartz crystal microbalance (QCM) instrument with nanoparticles amplification. Talanta 115:761–767Google Scholar
  47. 47.
    Su X-L, Li Y (2004) A self-assembled monolayer-based piezoelectric immunosensor for rapid detection of Escherichia coli O157:H7. Biosens Bioelectron 19(6):563–574Google Scholar
  48. 48.
    Hiatt LA, Cliffel DE (2012) Real-time recognition of mycobacterium tuberculosis and Lipoarabinomannan using the quartz crystal microbalance. Sens Actuators B Chem 174:245–252Google Scholar
  49. 49.
    Xi J, Chen JY, Garcia MP, Penn LS (2013) Biochips & tissue chips quartz crystal microbalance in cell biology studies. pp 1–9. https://www.omicsonline.org/open-access/quartz-crystal-microbalance-in-cell-biology-studies-2153-0777-S5-001.php?aid=11310
  50. 50.
    Afonso AS, Zanetti BF, Santiago AC, Henrique-Silva F, Mattoso LHC, Faria RC (2013) QCM immunoassay for recombinant cysteine peptidase: a potential protein biomarker for diagnosis of citrus canker. Talanta 104:193–197Google Scholar
  51. 51.
    Lu CH et al (2012) Sensing HIV related protein using epitope imprinted hydrophilic polymer coated quartz crystal microbalance. Biosens Bioelectron 31(1):439–444Google Scholar
  52. 52.
    Olanya G, Thormann E, Varga I, Makuska R, Claesson PM (2010) Protein interactions with bottle-brush polymer layers: effect of side chain and charge density ratio probed by QCM-D and AFM. J Colloid Interface Sci 349(1):265–274Google Scholar
  53. 53.
    Serro AP, Degiampietro K, Colaço R, Saramago B (2010) Adsorption of albumin and sodium hyaluronate on UHMWPE: a QCM-D and AFM study. Colloids Surf B Biointerfaces 78(1):1–7Google Scholar
  54. 54.
    Wang R, Li Y (2013) Hydrogel based QCM aptasensor for detection of avian influenza virus. Biosens Bioelectron 42(1):148–155Google Scholar
  55. 55.
    Michanek A, Kristen N, Höök F, Nylander T, Sparr E (2010) RNA and DNA interactions with zwitterionic and charged lipid membranes – a DSC and QCM-D study. Biochim Biophys Acta Biomembr 1798(4):829–838Google Scholar
  56. 56.
    Tsortos A, Papadakis G, Gizeli E (2008) Shear acoustic wave biosensor for detecting DNA intrinsic viscosity and conformation: a study with QCM-D. Biosens Bioelectron 24(4):842–847Google Scholar
  57. 57.
    Zhou XC, Huang LQ, Li SF (2001) Microgravimetric DNA sensor based on quartz crystal microbalance: comparison of oligonucleotide immobilization methods and the application in genetic diagnosis. Biosens Bioelectron 16(1–2):85–95Google Scholar
  58. 58.
    Hao RZ et al (2011) DNA probe functionalized QCM biosensor based on gold nanoparticle amplification for bacillus anthracis detection. Biosens Bioelectron 26(8):3398–3404Google Scholar
  59. 59.
    Wang D et al (2013) A reusable quartz crystal microbalance biosensor for highly specific detection of single-base DNA mutation. Biosens Bioelectron 48:276–280Google Scholar
  60. 60.
    Fang J, Zhu T, Sheng J, Jiang Z, Ma Y (2015) Thickness dependent effective viscosity of a polymer solution near an Interface probed by a quartz crystal microbalance with dissipation method. Sci Rep 5:8491Google Scholar
  61. 61.
    Eris G et al (2015) Determination of viscosity and density of fluids using frequency response of microcantilevers. J Supercrit Fluids 105:179–185Google Scholar
  62. 62.
    Jakoby B et al (2010) Miniaturized sensors for the viscosity and density of liquids – performance and issues. IEEE Trans Ultrason Ferroelectr Freq Control 57(1):111–120Google Scholar
  63. 63.
    Dunér G, Thormann E, Dėdinaitė A (2013) Quartz crystal microbalance with dissipation (QCM-D) studies of the viscoelastic response from a continuously growing grafted polyelectrolyte layer. J Colloid Interface Sci 408(1):229–234Google Scholar
  64. 64.
    Sweity A et al (2011) Relation between EPS adherence, viscoelastic properties, and MBR operation: biofouling study with QCM-D. Water Res 45(19):6430–6440Google Scholar
  65. 65.
    Yu GY (2008) Magnetic quartz crystal microbalance. http://aip.scitation.org/doi/10.1063/1.2749448
  66. 66.
    Nakamoto T, Kobayashi T (1994) Development of circuit for measuring both Q variation and resonant frequency shift of quartz crystal microbalance. IEEE Trans Ultrason Ferroelectr Freq Control 41(6):806–811Google Scholar
  67. 67.
    Yao Y, Chen X, Guo H, Wu Z (2011) Graphene oxide thin film coated quartz crystal microbalance for humidity detection. Appl Surf Sci 257(17):7778–7782Google Scholar
  68. 68.
    Kim GH, Rand AG, Letcher SV (2003) Impedance characterization of a piezoelectric immunosensor. Part I: antibody coating and buffer solution. Biosens Bioelectron 18(1):83–89Google Scholar
  69. 69.
    Johannsmann D, Mathauer K, Wegner G, Knoll W (1992) Viscoelastic properties of thin films probed with a quartz-crystal resonator. Phys Rev B Condens Matter 46(12):7808–7815Google Scholar
  70. 70.
    Wessendorf KKO (1993) The lever oscillator for use in high resistance resonator applications. In: 1993 I.E. international frequency control symposium. pp 711–717. http://ieeexplore.ieee.org/document/367466/
  71. 71.
    Wessendorf KO (2001) The active-bridge oscillator for use with liquid loaded QCM sensors. pp 400–407. http://ieeexplore.ieee.org/document/956260/
  72. 72.
    Papez V, Papezova S (2011) Bridge symmetric crystal oscillator. In: 2011 international conference on telecommunications in modern satellite, cable and broadcasting services TELSIKS 2011 – proceedings of papers, vol 2. pp 597–600. http://ieeexplore.ieee.org/document/6143185/
  73. 73.
    Schweyer M, Hilton J, Munson JE, Andle JC, Hammond JM, Lec RM (1997) A novel monolithic piezoelectric sensor. In: Proceedings of international frequency control symposium. pp 32–40. http://ieeexplore.ieee.org/document/638517/
  74. 74.
    Borngräber R, Schröder J, Lucklum R, Hauptmann P (2002) Is an oscillator-based measurement adequate in a liquid environment? IEEE Trans Ultrason Ferroelectr Freq Control 49(9):1254–1259Google Scholar
  75. 75.
    Rodriguez-Pardo L, Farina J, Gabrielli C, Perrot H, Brendel R (2004) Miller oscillators for high sensitivity quartz crystal microbalance sensors in damping media. pp 806–812. http://ieeexplore.ieee.org/document/1418571/
  76. 76.
    Rodriguez-Pardo L, Fariña J, Gabrielli C, Perrot H, Brendel R (2007) Design considerations of miller oscillators for high-sensitivity QCM sensors in damping media. IEEE Trans Ultrason Ferroelectr Freq Control 54(10):1965–1976Google Scholar
  77. 77.
    Ferrari M, Ferrari V, Marioli D, Taroni A, Suman M, Dalcanale E (2006) In-liquid sensing of chemical compounds by QCM sensors coupled with high-accuracy ACC oscillator. IEEE Trans Instrum Meas 55(3):828–834Google Scholar
  78. 78.
    Doerner S, Schneider T, Schroder J, Hauptmann P (2003) Universal impedance spectrum analyzer for sensor applications, vol 1. pp 596–599. http://ieeexplore.ieee.org/document/1279007/
  79. 79.
    Schröder J, Borngräber R, Eichelbaum F, Hauptmann P (2002) Advanced interface electronics and methods for QCM. Sensors Actuators A Phys 97–98:543–547Google Scholar
  80. 80.
    Oberfrank S, Drechsel H, Sinn S, Northoff H, Gehring F (2016) Utilisation of quartz crystal microbalance sensors with dissipation (QCM-D) for a Clauss fibrinogen assay in comparison with common coagulation reference methods. Sensors 16(3):282Google Scholar
  81. 81.
    Sinn S et al (2010) Platelet aggregation monitoring with a newly developed quartz crystal microbalance system as an alternative to optical platelet aggregometry. Analyst 135(11):2930–2938Google Scholar
  82. 82.
    Stefan Sinn MH (2013) Blood coagulation Thromboplastine time measurements on a nanoparticle coated quartz crystal microbalance biosensor in excellent agreement with standard clinical methods. J Biosens Bioelectron 4(4):4–9Google Scholar
  83. 83.
    Hussain M, Northoff H, Gehring FK (2015) QCM-D providing new horizon in the domain of sensitivity range and information for haemostasis of human plasma. Biosens Bioelectron 66:579–584Google Scholar
  84. 84.
    Yao C, Qu L, Fu W (2013) Detection of fibrinogen and coagulation factor VIII in plasma by a quartz crystal microbalance biosensor. Sensors (Basel) 13(6):6946–6956Google Scholar
  85. 85.
    Mustafa MK, Nabok A, Parkinson D, Tothill IE, Salam F, Tsargorodskaya A (2010) Detection of ??-amyloid peptide (1-16) and amyloid precursor protein (APP770) using spectroscopic ellipsometry and QCM techniques: a step forward towards Alzheimers disease diagnostics. Biosens Bioelectron 26(4):1332–1336Google Scholar
  86. 86.
    Wang Y, Moss MA (2016) Effect of resveratrol and derivatives on interactions between Alzheimer’s Disease Associated Aβ protein oligomers and Lipid Membranes: a quartz crystal microbalance analysis. Biophys J 110(3, Supplement 1):256aGoogle Scholar
  87. 87.
    Uludağ Y, Tothill IE (2010) Development of a sensitive detection method of cancer biomarkers in human serum (75%) using a quartz crystal microbalance sensor and nanoparticles amplification system. Talanta 82(1):277–282Google Scholar
  88. 88.
    Nowacki L et al (2014) Real-time QCM-D monitoring of cancer cell death early events in a dynamic context. Biosens Bioelectron 64:469–476Google Scholar
  89. 89.
    Bianco M et al (2013) Quartz crystal microbalance with dissipation (QCM-D) as tool to exploit antigen-antibody interactions in pancreatic ductal adenocarcinoma detection. Biosens Bioelectron 42(1):646–652Google Scholar
  90. 90.
    Kim YJ, Rahman MM, Lee JJ (2013) Ultrasensitive and label-free detection of annexin A3 based on quartz crystal microbalance. Sensors Actuators B Chem 177:172–177Google Scholar
  91. 91.
    Li D et al (2011) A nanobeads amplified QCM immunosensor for the detection of avian influenza virus H5N1. Biosens Bioelectron 26(10):4146–4154Google Scholar
  92. 92.
    Gale AJ (2011) Continuing education course #2: current understanding of hemostasis. Toxicol Pathol 39(1):273–280Google Scholar
  93. 93.
    World Health Organization (2016) Global tuberculosis report 2016. [Online]. Available: http://www.who.int/tb/en/
  94. 94.
    Harbeck M, Erbahar DD, Gürol I, Musluoğlu E, Ahsen V, Öztürk ZZ (2010) Phthalocyanines as sensitive coatings for QCM sensors operating in liquids for the detection of organic compounds. Sensors Actuators B Chem 150(1):346–354Google Scholar
  95. 95.
    Xie J, Wang H, Lin Y, Zhou Y, Wu Y (2013) Highly sensitive humidity sensor based on quartz crystal microbalance coated with ZnO colloid spheres. Sensors Actuators B Chem 177:1083–1088Google Scholar
  96. 96.
    Erbahar DD et al (2012) Pesticide sensing in water with phthalocyanine based QCM sensors. Sensors Actuators B Chem 173:562–568Google Scholar
  97. 97.
    Korposh S, Selyanchyn R, Lee SW (2010) Nano-assembled thin film gas sensors. IV. Mass-sensitive monitoring of humidity using quartz crystal microbalance (QCM) electrodes. Sensors Actuators B Chem 147(2):599–606Google Scholar
  98. 98.
    Mumyakmaz B, Özmen A, Ebeoǧlu MA, Taşaltin C, Gürol I (2010) A study on the development of a compensation method for humidity effect in QCM sensor responses. Sensors Actuators B Chem 147(1):277–282Google Scholar
  99. 99.
    Tai H et al (2016) Facile development of high performance QCM humidity sensor based on protonated polyethylenimine-graphene oxide nanocomposite thin film. Sensors Actuators B Chem 230:501–509Google Scholar
  100. 100.
    Zhou X, Zhang J, Jiang T, Wang X, Zhu Z (2007) Humidity detection by nanostructured ZnO: a wireless quartz crystal microbalance investigation. Sensors Actuators A Phys 135(1):209–214Google Scholar
  101. 101.
    Hu W, Chen S, Zhou B, Liu L, Ding B, Wang H (2011) Highly stable and sensitive humidity sensors based on quartz crystal microbalance coated with bacterial cellulose membrane. Sensors Actuators B Chem 159(1):301–306Google Scholar
  102. 102.
    Harbeck M, Erbahar DD, Gürol I, Musluolu E, Ahsen V, Öztürk ZZ (2011) Phthalocyanines as sensitive coatings for QCM sensors: comparison of gas and liquid sensing properties. Sensors Actuators B Chem 155(1):298–303Google Scholar
  103. 103.
    Hu W, Chen S, Liu L, Ding B, Wang H (2011) Formaldehyde sensors based on nanofibrous polyethyleneimine/bacterial cellulose membranes coated quartz crystal microbalance. Sensors Actuators B Chem 157(2):554–559Google Scholar
  104. 104.
    Andreeva N, Ishizaki T, Baroch P, Saito N (2012) High sensitive detection of volatile organic compounds using superhydrophobic quartz crystal microbalance. Sensors Actuators B Chem 164(1):15–21Google Scholar
  105. 105.
    Sakti SP, Chabibah N, Ayu SP, Padaga MC, Aulanni’am A (2016) Development of QCM biosensor with specific cow milk protein antibody for candidate milk adulteration detection. J Sens 2016(2):1–7Google Scholar
  106. 106.
    Lederer T, Stehrer BP, Bauer S, Jakoby B, Hilber W (2011) Utilizing a high fundamental frequency quartz crystal resonator as a biosensor in a digital microfluidic platform. Sensors Actuators A Phys 172(1):161–168Google Scholar
  107. 107.
    Tuantranont A, Wisitsora-at A, Sritongkham P, Jaruwongrungsee K (2011) A review of monolithic multichannel quartz crystal microbalance: a review. Anal Chim Acta 687(2):114–128Google Scholar
  108. 108.
    Liu F, Li F, Nordin AN, Voiculescu I (2013) A novel cell-based hybrid acoustic wave biosensor with impedimetric sensing capabilities. Sensors (Basel) 13(3):3039–3055Google Scholar
  109. 109.
    Hung VN, Abe T, Minh PN, Esashi M (2003) High-frequency one-chip multichannel quartz crystal microbalance fabricated by deep RIE. Sensors Actuators A Phys 108(1–3):91–96Google Scholar
  110. 110.
    Zhao Z, Qian Z, Wang B (2016) Effects of unequal electrode pairs on an x-strip thickness-shear mode multi-channel quartz crystal microbalance. Ultrasonics 72:73–79Google Scholar
  111. 111.
    Nilebäck E, Feuz L, Uddenberg H, Valiokas R, Svedhem S (2011) Characterization and application of a surface modification designed for QCM-D studies of biotinylated biomolecules. Biosens Bioelectron 28(1):407–413Google Scholar
  112. 112.
    Zhou W-H, Tang S-F, Yao Q-H, Chen F-R, Yang H-H, Wang X-R (2010) A quartz crystal microbalance sensor based on mussel-inspired molecularly imprinted polymer. Biosens Bioelectron 26(2):585–589Google Scholar
  113. 113.
    Fan X, Du B (2012) Selective detection of trace p-xylene by polymer-coated QCM sensors. Sensors Actuators B Chem 166–167:753–760Google Scholar
  114. 114.
    Naderi A, Olanya G, Makuska R, Claesson PM (2008) Desorption of bottle-brush polyelectrolytes from silica by addition of linear polyelectrolytes studied by QCM-D and reflectometry. J Colloid Interface Sci 323(2):223–228Google Scholar
  115. 115.
    Ottakam Thotiyl MM et al (2012) Multilayer assemblies of polyelectrolyte-gold nanoparticles for the electrocatalytic oxidation and detection of arsenic(III). J Colloid Interface Sci 383(1):130–139Google Scholar
  116. 116.
    Su P-G, Cheng K-H (2009) Self-assembly of polyelectrolytic multilayer thin films of polyelectrolytes on QCM for detecting low humidity. Sensors Actuators B Chem 142:123–129Google Scholar
  117. 117.
    Deshmukh PK et al (2013) Stimuli-sensitive layer-by-layer (LbL) self-assembly systems: targeting and biosensory applications. J Controll Release 166(3):294–306Google Scholar
  118. 118.
    Voinova MV, Rodahl M, Jonson M, Kasemo B (1999) Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces: continuum mechanics approach. Phys Scr 59(5):391–396Google Scholar
  119. 119.
    Marx KA (2003) Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface. Biomacromolecules 4(5):1099–1120Google Scholar
  120. 120.
    Pejcic B, Myers M, Ranwala N, Boyd L, Baker M, Ross A (2011) Modifying the response of a polymer-based quartz crystal microbalance hydrocarbon sensor with functionalized carbon nanotubes. Talanta 85(3):1648–1657Google Scholar
  121. 121.
    Sayago I et al (2011) Surface acoustic wave gas sensors based on polyisobutylene and carbon nanotube composites. Sensors Actuators B Chem 156(1):1–5Google Scholar
  122. 122.
    Indest T, Laine J, Kleinschek KS, Zemljič LF (2010) Adsorption of human serum albumin (HSA) on modified PET films monitored by QCM-D, XPS and AFM. Colloids Surf A Physicochem Eng Asp 360(1–3):210–219Google Scholar
  123. 123.
    Vashist SK, Vashist P (2011) Recent advances in Quartz CrystalMicrobalance-Based Sensors. J Sens 2011:13Google Scholar
  124. 124.
    Clavaguera S, Montméat P, Parret F, Pasquinet E, Lère-Porte JP, Hairault L (2010) Comparison of fluorescence and QCM technologies: example of explosives detection with a π-conjugated thin film. Talanta 82(4):1397–1402Google Scholar
  125. 125.
    Kim J, Kim S, Ohashi T, Muramatsu H, Chang S-M, Kim W-S (2009) Construction of simultaneous SPR and QCM sensing platform. Bioprocess Biosyst Eng 33(1):39Google Scholar
  126. 126.
    Zhou J, Deng C, Si S, Shi Y, Zhao X (2011) Study on the effect of EDTA on the photocatalytic reduction of mercury onto nanocrystalline titania using quartz crystal microbalance and differential pulse voltammetry. Electrochim Acta 56(5):2062–2067Google Scholar
  127. 127.
    Mech K, Żabiński P, Kowalik R, Fitzner K (2012) EQCM, SEC and voltammetric study of kinetics and mechanism of hexaamminecobalt(III) electro-reduction onto gold electrode. Electrochim Acta 81:254–259Google Scholar
  128. 128.
    Zelinsky AG, Novgorodtseva ON (2013) EQCM study of the dissolution of gold in thiosulfate solutions. Hydrometallurgy 138:79–83Google Scholar
  129. 129.
    Voltammetric, EQCM, and in situ conductance studies of p- and n-dopable polymers based on ethylenedioxythiophene and bithiazole.pdfGoogle Scholar
  130. 130.
    Hart R, Ergezen E, Lec R, Noh HM (2011) Improved protein detection on an AC electrokinetic quartz crystal microbalance (EKQCM). Biosens Bioelectron 26(8):3391–3397Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Luis Armando Carvajal Ahumada
    • 1
    • 2
    • 3
  • Oscar Leonardo Herrera Sandoval
    • 2
    • 3
  • Nuria Peña Perez
    • 1
  • Felipe Andrés Silva Gómez
    • 4
  • Mariano Alberto García-Vellisca
    • 1
  • José Javier Serrano Olmedo
    • 1
  1. 1.Centro de tecnología Biomédica (CTB)Universidad Politécnica de Madrid (UPM)MadridSpain
  2. 2.Facultad de Ingeniería y Ciencias BásicasUniversidad CentralBogotáColombia
  3. 3.Centro de investigación y desarrollo tecnológico de la industria electro electrónica y TICBogotáColombia
  4. 4.Corporación de Alta Tecnología para la Defensa (CODALTEC)VillavicencioColombia

Personalised recommendations