In Situ Characterization of Size, Spatial Distribution, Chemical Composition, and Electroanalytical Response of Hybrid Nanocomposite Materials

  • Julio Bastos-ArrietaEmail author
  • Raquel Montes
  • Cristina Ocaña
  • Marisol Espinoza
  • Maria Muñoz
  • Mireia Baeza


Life in the twenty-first century is dependent on an unlimited variety of advanced hybrid materials – among them, nanomaterials (NMs). The design of these NMs mostly depends on the current necessities of the society, the availability of resources, and the investment required for an appropriate scale-up production. Thus, regarding the preparation of novel NMs, it is mandatory for the evaluation of their properties in order to satisfy the desired applications with high performance. In this chapter, we discuss different techniques that offer the possibility of the in situ characterization of NMs and nanocomposite materials (NCs), in terms of their chemical composition, spatial distribution, and optical and electrochemical features, without modifying the material itself.



JB and RM thank UAB for the Ph.D. fellowships and mobility grants during Ph.D. studies. CO acknowledges funding from the People Programme (Marie Curie Actions) of the 7th Framework Programme of the European Union (FP7/2007-2013) under REA grant agreement no. 600388 (TECNIOSpring programme), and from the Agency for Business Competitiveness of the Government of Catalonia (ACCIÓ).

Supplementary material


  1. 1.
    Van Hove MA (2006) From surface science to nanotechnology. Catal Today 113:133–140CrossRefGoogle Scholar
  2. 2.
    Serrano E, Rus G, García-Martínez J (2009) Nanotechnology for sustainable energy. Renew Sust Energ Rev 13:2373–2384CrossRefGoogle Scholar
  3. 3.
    Sanchez F, Sobolev K (2010) Nanotechnology in concrete – a review. Constr Build Mater 24:2060–2071CrossRefGoogle Scholar
  4. 4.
    Misra P (2009) Introduction. In: Blackman JA (ed) Metallic nanoparticles, 1st edn. Elsevier, AmsterdamGoogle Scholar
  5. 5.
    Xiao Y, Li CM (2008) Nanocomposites: from fabrications to electrochemical bioapplications. Electroanalysis 20:648–662CrossRefGoogle Scholar
  6. 6.
    Role T, Scattering ER (1982) Electrochemical properties of small clusters of metal atoms and their role in surface enhanced raman scattering. J Phys Chem 460:3166–3170Google Scholar
  7. 7.
    Wang ZL. (Ed.) (1999) Characterization of Nanophase Materials. Nanomaterials for Nanoscience and Nanotechnology. Weinheim, FRG: Wiley-VCH Verlag GmbH.
  8. 8.
    Tiano AL, Koenigsmann C, Santulli AC, Wong SS (2010) Solution-based synthetic strategies for one-dimensional metal-containing nanostructures. Chem Commun (Camb) 46:8093–8130CrossRefGoogle Scholar
  9. 9.
    Muñoz-Rojas D, Oró-Solé J, Ayyad O, Gómez-Romero P (2008) Facile one-pot synthesis of self-assembled silver@Polypyrrole Core/Shell Nanosnakes. Small 4:1301–1306CrossRefGoogle Scholar
  10. 10.
    Domènech B, Bastos-Arrieta J, Alonso A (2012) Bifunctional polymer-metal nanocomposite ion exchange materials. In: Kilislioglu A (ed) Ion exchange technologies. InTech, Barcelona, pp 35–72Google Scholar
  11. 11.
    Donnan FG (1995) Theory of membrane equilibria and membrane potentials in the presence of non-dialysing electrolytes. A contribution to physical-chemical physiology. J Membr Sci 100:45–55CrossRefGoogle Scholar
  12. 12.
    Sharifi S, Behzadi S, Laurent S, Forrest ML, Stroeve P, Mahmoudi M (2012) Toxicity of nanomaterials. Chem Soc Rev 41:2323–2343CrossRefGoogle Scholar
  13. 13.
    Chan VSW (2006) Nanomedicine: an unresolved regulatory issue. Regul Toxicol Pharmacol 46:218–224CrossRefGoogle Scholar
  14. 14.
    Franco A, Hansen SF, Olsen SI, Butti L (2007) Limits and prospects of the “incremental approach” and the European legislation on the management of risks related to nanomaterials. Regul Toxicol Pharmacol 48:171–183CrossRefGoogle Scholar
  15. 15.
    Handy RD, Shaw BJ (2007) Toxic effects of nanoparticles and nanomaterials: implications for public health, risk assessment and the public perception of nanotechnology. Health Risk Soc 9:125–144CrossRefGoogle Scholar
  16. 16.
    Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, de Heer C, ten Voorde SECG, Wijnhoven SWP, Marvin HJP, Sips AJAM (2009) Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53:52–62CrossRefGoogle Scholar
  17. 17.
    Oberdörster G, Stone V, Donaldson K (2007) Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1:2–25CrossRefGoogle Scholar
  18. 18.
    Cumbal L, Sengupta AK (2005) Arsenic removal using polymer-supported hydrated iron(III) oxide nanoparticles: role of donnan membrane effect. Environ Sci Technol 39:6508–6515CrossRefGoogle Scholar
  19. 19.
    Campelo JM, Luna D, Luque R, Marinas JM, Romero A a (2009) Sustainable preparation of supported metal nanoparticles and their applications in catalysis. ChemSusChem 2:18–45CrossRefGoogle Scholar
  20. 20.
    Ramesh GV, Porel S, Radhakrishnan TP (2009) Polymer thin films embedded with in situ grown metal nanoparticles. Chem Soc Rev 38:2646–2656CrossRefGoogle Scholar
  21. 21.
    Burato C, Centomo P, Pace G, Favaro M, Prati L, Corain B (2005) Generation of size-controlled palladium(0) and gold(0) nanoclusters inside the Nanoporous domains of gel-type functional resins: Part II: prospects for oxidation catalysis in the liquid phase. J Mol Catal A Chem 238:26–34CrossRefGoogle Scholar
  22. 22.
    Ruiz P, Muñoz M, Macanás J, Muraviev DN (2010) Intermatrix synthesis of polymer−copper nanocomposites with tunable parameters by using copper Comproportionation reaction. Chem Mater 22:6616–6623CrossRefGoogle Scholar
  23. 23.
    Ruckenstein E, Park JS (1989) Preparation of polymer composites. A colloidal pathway. Chem Mater 1:343–348CrossRefGoogle Scholar
  24. 24.
    Sarkar S, Guibal E, Quignard F, SenGupta a K (2012) Polymer-supported metals and metal oxide nanoparticles: synthesis, characterization, and applications. J Nanopart Res 14:715CrossRefGoogle Scholar
  25. 25.
    Muraviev DN (2005) Inter-matrix synthesis of polymer stabilised metal nanoparticles for sensor applications. Contrib Sci 3:19–32Google Scholar
  26. 26.
    Domènech B, Muñoz M, Muraviev DN, Macanás J (2014) Uncommon patterns in Nafion films loaded with silver nanoparticles. Chem Commun (Camb) 50:4693–4695CrossRefGoogle Scholar
  27. 27.
    Bastos-Arrieta J, Muñoz M, Ruiz P, Muraviev DN (2013) Morphological changes of gel-type functional polymers after Intermatrix synthesis of polymer stabilized silver nanoparticles. Nanoscale Res Lett 8:255CrossRefGoogle Scholar
  28. 28.
    Ruiz P, Muñoz M, Macanás J, Turta C, Prodius D, Muraviev DN (2010) Intermatrix synthesis of polymer stabilized inorganic nanocatalyst with maximum accessibility for reactants. Dalton Trans 39:1751–1757CrossRefGoogle Scholar
  29. 29.
    Alonso A, Macanás J, Shafir A, Muñoz M, Vallribera A, Prodius D, Melnic S, Turta C, Muraviev DN (2010) Donnan-exclusion-driven distribution of catalytic ferromagnetic nanoparticles synthesized in polymeric fibers. Dalton Trans 39:2579–2586CrossRefGoogle Scholar
  30. 30.
    Ruiz P, Macanás J, Muñoz M, Muraviev DN (2011) Intermatrix synthesis: easy technique permitting preparation of polymer-stabilized nanoparticles with desired composition and structure. Nanoscale Res Lett 6:343CrossRefGoogle Scholar
  31. 31.
    Konev DV, Fertikov VV, Kravchenko T a, Kalinichev a I (2008) The inverse problem of the kinetics of redox sorption taking into account the size of ultradisperse metal particles in an electron-ion exchanger. Russ J Phys Chem A 82:1363–1367CrossRefGoogle Scholar
  32. 32.
    Levenstein R, Hasson D, Semiat R (1996) Utilization of the donnan effect for improving electrolyte separation with nanofiltration membranes. J Membr Sci 116:77–92CrossRefGoogle Scholar
  33. 33.
    Mijangos F, Tikhonov N, Ortueta M, Dautov A (2002) Modeling ion-exchange kinetics in bimetallic systems. Ind Eng Chem Res 41:1357–1363CrossRefGoogle Scholar
  34. 34.
    Alonso A, Muñoz-Berbel X, Vigués N, Rodríguez-Rodríguez R, Macanás J, Mas J, Muñoz M, Muraviev DN (2012) Intermatrix synthesis of monometallic and magnetic metal/metal oxide nanoparticles with bactericidal activity on anionic exchange polymers. RSC Adv 2:4596–4599CrossRefGoogle Scholar
  35. 35.
    Bastos-Arrieta J, Shafir A, Alonso A, Muñoz M, Macanás J, Muraviev DN (2012) Donnan exclusion driven Intermatrix synthesis of reusable polymer stabilized palladium nanocatalysts. Catal Today 193:207–212CrossRefGoogle Scholar
  36. 36.
    Greenleaf JE, Lin J, Sengupta AK (2006) Two novel applications of ion exchange fibers: arsenic removal and chemical-free softening of hard water. Environ Prog 25:300–311CrossRefGoogle Scholar
  37. 37.
    Witten TA, Sander LM (1983) Diffussion-limited aggregation. Phys Rev B 27:5686–5697CrossRefGoogle Scholar
  38. 38.
    Zhang Y, Cui X, Shi F, Deng Y (2012) Nano-gold catalysis in fine chemical synthesis. Chem Rev 112:2467–2505CrossRefGoogle Scholar
  39. 39.
    Wu Y, Wang D, Li Y (2014) Nanocrystals from solutions: catalysts. Chem. Soc. Rev 43(7), 2112–2124.
  40. 40.
    Akamatsu K, Adachi S, Tsuruoka T, Ikeda S, Tomita S, Nawafune H (2008) Nanoparticles with Controlled Microstructures. Chem Mater 20:3042–3047CrossRefGoogle Scholar
  41. 41.
    Akamatsu K, Fujii M, Tsuruoka T, Nakano S, Murashima T, Nawafune H (2012) Mechanistic study on microstructural tuning of metal nanoparticle/polymer composite thin layers: hydrogenation and decomposition of polyimide matrices catalyzed by embedded nickel nanoparticles. J Phys Chem C 116:17947–17954CrossRefGoogle Scholar
  42. 42.
    Alonso A, Muñoz-Berbel X, Vigués N, Macanás J, Muñoz M, Mas J, Muraviev DN (2012) Characterization of fibrous polymer silver/cobalt nanocomposite with enhanced bactericide activity. Langmuir 28:783–790CrossRefGoogle Scholar
  43. 43.
    Alonso A, Vigués N, Muñoz-Berbel X, Macanás J, Muñoz M, Mas J, Muraviev DN (2011) Environmentally-safe bimetallic Ag@Co magnetic nanocomposites with antimicrobial activity. Chem Commun (Camb) 47:10464–10466CrossRefGoogle Scholar
  44. 44.
    Muraviev DN, Macanás J, Ruiz P, Munoz M, Muñoz M (2008) Synthesis, stability and Electrocatalytic activity of polymer-stabilized monometallic Pt and bimetallic Pt/Cu Core-Shell nanoparticles. Phys Status Solidi Appl Mater Sci 205:1460–1464CrossRefGoogle Scholar
  45. 45.
    Muraviev D, Macanas J, Farre M, Munoz M, Alegret S (2006) Novel routes for inter-matrix synthesis and characterization of polymer stabilized metal nanoparticles for molecular recognition devices. Sensors Actuators B Chem 118:408–417CrossRefGoogle Scholar
  46. 46.
    Elliott SD, Moloney MP, Gun’ko YK (2008) Chiral shells and achiral cores in CdS quantum dots. Nano Lett 8:2452–2457CrossRefGoogle Scholar
  47. 47.
    Petryayeva E, Algar WR, Medintz IL (2013) Quantum dots in bioanalysis: a review of applications across various platforms for fluorescence spectroscopy and imaging. Appl Spectrosc 67:215–252CrossRefGoogle Scholar
  48. 48.
    Moloney MP, Gun’ko YK, Kelly JM (2007) Chiral highly luminescent CdS quantum dots. Chem Commun (Camb) 7345:3900–3902CrossRefGoogle Scholar
  49. 49.
    Bera D, Qian L, Tseng T-K, Holloway PH (2010) Quantum dots and their multimodal applications: a review. Materials (Basel) 3:2260–2345CrossRefGoogle Scholar
  50. 50.
    Bastos-Arrieta J, Muñoz J, Stenbock-Fermor A, Muñoz M, Muraviev DN, Céspedes F, Tsarkova LA, Baeza M (2016) Intermatrix synthesis as a rapid, inexpensive and reproducible methodology for the in situ functionalization of nanostructured surfaces with quantum dots. Appl Surf Sci 368:417–426CrossRefGoogle Scholar
  51. 51.
    Sokolova V, Epple M (2011) Synthetic pathways to make nanoparticles fluorescent. Nanoscale 3:1957–1962CrossRefGoogle Scholar
  52. 52.
    Kozlova D, Chernousova S, Knuschke T, Buer J, Westendorf AM, Epple M (2012) Cell targeting by antibody-functionalized calcium phosphate nanoparticles. J Mater Chem 22:396CrossRefGoogle Scholar
  53. 53.
    Jun Han Z, Rider AE, Ishaq M, Kumar S, Kondyurin A, Bilek MMM, Levchenko I, Ostrikov (Ken) K (2013) Carbon nanostructures for hard tissue engineering. RSC Adv 3:11058CrossRefGoogle Scholar
  54. 54.
    Chernousova S, Klesing J, Soklakova N, Epple M (2013) A genetically active Nano-calcium phosphate paste for bone substitution, encoding the formation of BMP-7 and VEGF-A. RSC Adv 3:11155CrossRefGoogle Scholar
  55. 55.
    Mahl D, Diendorf J, Ristig S, Greulich C, Li ZA, Farle M, Köller M, Epple M (2012) Silver, gold, and alloyed silver-gold nanoparticles: characterization and comparative cell-biologic action. J Nanopart Res 14(10):1153Google Scholar
  56. 56.
    de la Escosura-Muñiz A, Merkoçi A (2010) Electrochemical detection of proteins using nanoparticles: applications to diagnostics. Expert Opin Med Diagn 4:21–37CrossRefGoogle Scholar
  57. 57.
    Perfézou M, Turner A, Merkoçi A (2012) Cancer detection using nanoparticle-based sensors. Chem Soc Rev 41:2606CrossRefGoogle Scholar
  58. 58.
    Aragay G, Pons J, Merkoçi A (2011) Enhanced electrochemical detection of heavy metals at heated graphite nanoparticle-based screen-printed electrodes. J Mater Chem 21:4326CrossRefGoogle Scholar
  59. 59.
    Merkoçi A (2010) Nanoparticles-based strategies for DNA, protein and cell sensors. Biosens Bioelectron 26:1164–1177CrossRefGoogle Scholar
  60. 60.
    Mohanraj V, Chen Y, Chen M (2006) Nanoparticles – a review. Trop J Pharm Res 5:561–573Google Scholar
  61. 61.
    Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779CrossRefGoogle Scholar
  62. 62.
    Espinoza-Castañeda M, de la Escosura-Muñiz A, González-Ortiz G, Martín-Orúe SM, Pérez JF, Merkoçi A (2013) Casein modified gold nanoparticles for future theranostic applications. Biosens Bioelectron 40:271–276CrossRefGoogle Scholar
  63. 63.
    Mamalis AG, Vogtländer LOG, Markopoulos A (2004) Nanotechnology and nanostructured materials: trends in carbon nanotubes. Precis Eng 28:16–30CrossRefGoogle Scholar
  64. 64.
    Ramírez-García S, Alegret S, Céspedes F, Forster RJ (2004) Carbon composite microelectrodes: charge percolation and electroanalytical performance. Anal Chem 76:503–512CrossRefGoogle Scholar
  65. 65.
    Montes R, Bartrolí J, Céspedes F, Baeza M (2014) Towards to the improvement of the analytical response in voltammetric sensors based on rigid composites. J Electroanal Chem 733:69–76CrossRefGoogle Scholar
  66. 66.
    Montes R, Bartrolí J, Baeza M, Céspedes F (2015) Improvement of the detection limit for biosensors: advances on the optimization of biocomposite composition. Microchem J 119:66–74CrossRefGoogle Scholar
  67. 67.
    Wang J (2000) Practical considerations. In: Analytical electrochemistry. Wiley-VCH, New York, pp 100–139CrossRefGoogle Scholar
  68. 68.
    Perez B, Pumera M, del Valle M, Merkoci A, Alegret S (2005) Glucose biosensor based on carbon nanotube epoxy composites. J Nanosci Nanotechnol 5:1694–1698CrossRefGoogle Scholar
  69. 69.
    Montes R, Céspedes F, Baeza M (2016) Highly sensitive electrochemical immunosensor for IgG detection based on optimized rigid biocomposites. Biosens Bioelectron 78:505–512CrossRefGoogle Scholar
  70. 70.
    Santandreu M, Solé S, Fàbregas E, Alegret S (1998) Development of electrochemical immunosensing systems with renewable surfaces. Biosens Bioelectron 13:7–17CrossRefGoogle Scholar
  71. 71.
    Li Y, Zhang Z, Zhang Y, Deng D, Luo L, Han B, Fan C (2016) Nitidine chloride-assisted bio-functionalization of reduced graphene oxide by bovine serum albumin for impedimetric immunosensing. Biosens Bioelectron 79:536–542CrossRefGoogle Scholar
  72. 72.
    Wang Q, Zhou Z, Zhai Y, Zhang L, Hong W, Zhang Z, Dong S (2015) Label-free aptamer biosensor for thrombin detection based on functionalized graphene nanocomposites. Talanta 141:247–252CrossRefGoogle Scholar
  73. 73.
    Chen X, Qin P, Li J, Yang Z, Wen Z, Jian Z, Zhao J, Hu X, Jiao X (2015) Impedance immunosensor for bovine interleukin-4 using an electrode modified with reduced graphene oxide and chitosan. Microchim Acta 182:369–376CrossRefGoogle Scholar
  74. 74.
    Romero-Arcos M, Garnica-Romo M, Martínez-Flores H (2016) Electrochemical study and characterization of an amperometric biosensor based on the immobilization of laccase in a nanostructure of TiO2 synthesized by the sol-gel method. Materials (Basel) 9:543CrossRefGoogle Scholar
  75. 75.
    Fenga PG, Stradiotto NR, Pividori MI (2010) Preparation and characterization of graphite-epoxy composite modified with zinc hexacyanoferrate and their electrochemical behaviour in presence of substituted anilines. Electroanalysis 22:2979–2984CrossRefGoogle Scholar
  76. 76.
    Muñoz J, Bastos-Arrieta J, Muñoz M, Muraviev DN, Céspedes F, Baeza M (2014) Simple green routes for the customized preparation of sensitive carbon nanotubes/epoxy nanocomposite electrodes with functional metal nanoparticles. RSC Adv 4:44517–44524CrossRefGoogle Scholar
  77. 77.
    McDonald JR (1987) Impedance spectroscopy. Wiley, New YorkGoogle Scholar
  78. 78.
    Ashe D, Alleyne T, Iwuoha E (2007) Serum cytochrome c detection using a cytochrome c oxidase biosensor. Biotechnol Appl Biochem 46:185–189CrossRefGoogle Scholar
  79. 79.
    YH G, Ma HJ, Yue W, Tian B, Chen LL, Mao DL (2016) Microstructure and corrosion model of MAO coating on nano grained AA2024 pretreated by ultrasonic cold forging technology. J Alloy Compd 681:120–127CrossRefGoogle Scholar
  80. 80.
    Fonseca-Garcia A, Perez-Alvarez J, Barrera CC, Medina JC, Almaguer-Flores A, Sanchez RB et al (2016) The effect of simulated inflammatory conditions on the surface properties of titanium and stainless steel and their importance as biomaterials. Mater Sci Eng C Mater Biol Appl 66:119–129CrossRefGoogle Scholar
  81. 81.
    Hernandez S, Gerardi G, Bejtka K, Fina A, Russo N (2016) Evaluation of the charge transfer kinetics of spin-coated BiVO4 thin films for sun-driven water photoelectrolysis. Appl Catal B Environ 190:66–74CrossRefGoogle Scholar
  82. 82.
    Wang LZ, Yang SX, Wu B, Li P, Li ZN, Zhao YM (2016) The influence of anode materials on the kinetics toward electrochemical oxidation of phenol. Electrochim Acta 206:270–277CrossRefGoogle Scholar
  83. 83.
    Jing Y, Guo L, Chaplin BP (2016) Electrochemical impedance spectroscopy study of membrane fouling and electrochemical regeneration at a sub-stoichiometric TiO2 reactive electrochemical membrane. J Membr Sci 510:510–523CrossRefGoogle Scholar
  84. 84.
    Hwang T, Lee JK, Mun J, Choi W (2016) Surface-modified carbon nanotube coating on high-voltage LiNi0.5Mn1.5O4 cathodes for lithium ion batteries. J Power Sources 322:40–48CrossRefGoogle Scholar
  85. 85.
    Lan CK, Bao Q, Huang YH, Duh JG (2016) Embedding nano-Li4Ti5O12 in hierarchical porous carbon matrixes derived from water soluble polymers for ultra-fast lithium ion batteries anodic materials. J Alloy Compd 673:336–348CrossRefGoogle Scholar
  86. 86.
    Zhang CY, Liang P, Yang XF, Jiang Y, Bian YH, Chen CM et al (2016) Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell. Biosens Bioelectron 81:32–38CrossRefGoogle Scholar
  87. 87.
    Li WY, Guan B, Yan JH, Zhang N, Zhang XX, Liu XB (2016) Enhanced surface exchange activity and electrode performance of (La2-2xSr2x)(Ni1-xMnx)O4+delta cathode for intermediate temperature solid oxide fuel cells. J Power Sources 318:178–183CrossRefGoogle Scholar
  88. 88.
    Dhaiveegan P, Elangovan N, Nishimura T, Rajendran N (2014) Electrochemical characterization of carbon and weathering steels corrosion products to determine the protective ability using carbon paste electrode (CPE). Electroanalysis 26:2419–2428CrossRefGoogle Scholar
  89. 89.
    Cheng CK, Lin CH, HC W, Ma CCM, Yeh TK, Chou HY et al (2016) The two-dimensional nanocomposite of molybdenum disulfide and nitrogen-doped graphene oxide for efficient counter electrode of dye-sensitized solar cells. Nanoscale Res Lett 11(9):117CrossRefGoogle Scholar
  90. 90.
    Ning HL, Xin YL, Xu LK, Du AL (2016) Properties of IrO2-Ta2O5 coated titanium anodes modified with graphene. Rare Metal Mater Eng 45:945–950Google Scholar
  91. 91.
    Wiesing M, Baben MT, Schneider JM, de los Arcos T, Grundmeier G (2016) Combined electrochemical and electron spectroscopic investigations of the surface oxidation of TiAlN HPPMS hard coatings. Electrochim Acta 208:120–128CrossRefGoogle Scholar
  92. 92.
    Jovanovi IN, Cizmek L, Komorsky-Lovric S (2016) Electrochemistry-based determination of pungency level of hot peppers using the voltammetry of microparticles. Electrochim Acta 208:273–281CrossRefGoogle Scholar
  93. 93.
    Lupu S, Lete C, Balaure PC, del Campo FJ, Munoz FX, Lakard B et al (2013) In situ electrodeposition of biocomposite materials by sinusoidal voltages on microelectrodes array for tyrosinase based amperometric biosensor development. Sens Actuators B Chem 181:136–143CrossRefGoogle Scholar
  94. 94.
    Fotouhi L, Fatollahzadeh M, Heravi MM (2012) Electrochemical behavior and Voltammetric determination of sulfaguanidine at a glassy carbon electrode modified with a multi-walled carbon nanotube. Int J Electrochem Soc 7:3919–3928Google Scholar
  95. 95.
    Daniels JS, Pourmand N (2007) Label-Free Impedance Biosensors: Opportunities and Challenges, Electroanalysis 19:1239–1257CrossRefGoogle Scholar
  96. 96.
    Katz E, Willner I (2003) Electroanalysis 15:913–947CrossRefGoogle Scholar
  97. 97.
    Pacios M, del Valle M, Bartrolí J, Esplandiu MJ (2008) Journal of Electroanalytical Chemistry 619–620 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Julio Bastos-Arrieta
    • 1
    • 2
    • 8
    Email author
  • Raquel Montes
    • 3
    • 9
  • Cristina Ocaña
    • 5
    • 6
  • Marisol Espinoza
    • 7
  • Maria Muñoz
    • 4
  • Mireia Baeza
    • 4
  1. 1.Department of Chemical EngineeringUniversitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.Barcelona Research Center in Multiscale Science and EngineeringBarcelonaSpain
  3. 3.Departament d’Enginyeria Química, Biològica i Ambiental, Escola d’EnginyeriaUniversitat Autònoma de BarcelonaBarcelonaSpain
  4. 4.Departament de Química, Facultat de CiènciesCarrer dels Til·lers, Edifici C-Entrada NordBellaterra, BarcelonaSpain
  5. 5.Departament Micronano SistemesCSIC, Institute of Microelectronics of Barcelona IMB CNMBellaterraSpain
  6. 6.Johan Gadolin Process Chemistry Centre, c/o Laboratory of Analytical ChemistryAbo Akademi UniversityTurkuFinland
  7. 7.Department of ChemistryUniversidad Autónoma MetropolitanaMéxico, D. F.México
  8. 8.Physical ChemistryTechnische Universität DresdenDresdenGermany
  9. 9.Departament d’Enginyeria Química, Biològica i Ambiental, Carrer de les Sitges S/N, Edifici Q, Escola d’Enginyeria BellaterraBarcelonaSpain

Personalised recommendations