Advertisement

In Situ Localized Surface Plasmon Resonance Spectroscopy for Gold and Silver Nanoparticles

  • Ji Zhou
  • Bin Tang
Chapter

Abstract

Localized surface plasmon resonance (LSPR) spectroscopy of metallic nanoparticles (NPs) is a powerful technique for chemical and biological sensing experiments. LSPR is responsible for the electromagnetic field enhancement that leads to surface-enhanced Raman scattering (SERS) and other surface-enhanced spectroscopic processes [1].

References

  1. 1.
    Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297CrossRefGoogle Scholar
  2. 2.
    Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75CrossRefGoogle Scholar
  3. 3.
    Lee PC, Meisel D (1982) Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem 86:3391–3395CrossRefGoogle Scholar
  4. 4.
    Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature 241:20–22Google Scholar
  5. 5.
    Piella J, Bastus NG, Puntes V (2016) Size-controlled synthesis of sub-10-nanometer citrate-stabilized gold nanoparticles and related optical properties. Chem Mater 28:1066–1075CrossRefGoogle Scholar
  6. 6.
    Luo M, Huang H, Choi S-I, Zhang C, da Silva RR, Peng H-C, Li Z-Y, Liu J, He Z, Xia Y (2015) Facile synthesis of Ag nanorods with no plasmon resonance peak in the visible region by using pd decahedra of 16 nm in size as seeds. ACS Nano 9:10523–10532CrossRefGoogle Scholar
  7. 7.
    Wang W, Yan Y, Zhou N, Zhang H, Li D, Yang D (2016) Seed-mediated growth of Au nanorings with size control on Pd ultrathin nanosheets and their tunable surface plasmonic properties. Nanoscale 8:3704–3710CrossRefGoogle Scholar
  8. 8.
    Chao Y-J, Lyu Y-P, Wu Z-W, Lee C-L (2016) Seed-mediated growth of Ag nanocubes and their size-dependent activities toward oxygen reduction reaction. Int J Hydrog Energy 41:3896–3903CrossRefGoogle Scholar
  9. 9.
    Zhang X, Hicks EM, Zhao J, Schatz GC, Van Duyne RP (2005) Electrochemical tuning of silver nanoparticles fabricated by nanosphere lithography. Nano Lett 5:1503–1507CrossRefGoogle Scholar
  10. 10.
    Jin RC, Cao YC, Hao EC, Metraux GS, Schatz GC, Mirkin CA (2003) Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425:487–490CrossRefGoogle Scholar
  11. 11.
    Jin RC, Cao YW, Mirkin CA, Kelly KL, Schatz GC, Zheng JG (2001) Photoinduced conversion of silver nanospheres to nanoprisms. Science 294:1901–1903CrossRefGoogle Scholar
  12. 12.
    Noguez C (2007) Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem C 111:3806–3819CrossRefGoogle Scholar
  13. 13.
    Cao J, Sun T, Grattan KTV (2014) Gold nanorod-based localized surface plasmon resonance biosensors: a review. Sens Actuators B Chem 195:332–351CrossRefGoogle Scholar
  14. 14.
    Zhang Q, Zhou Y, Villarreal E, Lin Y, Zou S, Wang H (2015) Faceted gold nanorods: nanocuboids, convex nanocuboids, and concave nanocuboids. Nano Lett 15:4161–4169CrossRefGoogle Scholar
  15. 15.
    Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962CrossRefGoogle Scholar
  16. 16.
    Tian L, Chen E, Gandra N, Abbas A, Singamaneni S (2012) Gold nanorods as plasmonic nanotransducers: distance-dependent refractive index sensitivity. Langmuir 28:17435–17442CrossRefGoogle Scholar
  17. 17.
    Scarabelli L, Grzelczak M, Liz-Marzán LM (2013) Tuning gold nanorod synthesis through prereduction with salicylic acid. Chem Mater 25:4232–4238CrossRefGoogle Scholar
  18. 18.
    Martinsson E, Shahjamali MM, Large N, Zaraee N, Zhou Y, Schatz GC, Mirkin CA, Aili D (2016) Influence of surfactant bilayers on the refractive index sensitivity and catalytic properties of anisotropic gold nanoparticles. Small 12:330–342CrossRefGoogle Scholar
  19. 19.
    Ye S, Song J, Tian Y, Chen L, Wang D, Niu H, Qu J (2015) Photochemically grown silver nanodecahedra with precise tuning of plasmonic resonance. Nanoscale 7:12706–12712CrossRefGoogle Scholar
  20. 20.
    Bansal A, Verma SS (2015) Optical response of noble metal alloy nanostructures. Phys Lett A 379:163–169CrossRefGoogle Scholar
  21. 21.
    Njoki PN, Lim IIS, Mott D, Park H-Y, Khan B, Mishra S, Sujakumar R, Luo J, Zhong C-J (2007) Size correlation of optical and spectroscopic properties for gold nanoparticles. J Phys Chem C 111:14664–14669CrossRefGoogle Scholar
  22. 22.
    Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248CrossRefGoogle Scholar
  23. 23.
    Tang B, Xu S, Jian X, Tao J, Xu W (2010) Real-time, in-situ, extinction spectroscopy studies on silver-nanoseed formation. Appl Spectrosc 64:1407–1415CrossRefGoogle Scholar
  24. 24.
    Amendola V, Meneghetti M (2009) Size evaluation of gold nanoparticles by UV−vis spectroscopy. J Phys Chem C 113:4277–4285CrossRefGoogle Scholar
  25. 25.
    Tang B, An J, Zheng X, Xu S, Li D, Zhou J, Zhao B, Xu W (2008) Silver nanodisks with tunable size by heat aging. J Phys Chem C 112:18361–18367CrossRefGoogle Scholar
  26. 26.
    O’Brien MN, Jones MR, Kohlstedt KL, Schatz GC, Mirkin CA (2015) Uniform circular disks with synthetically tailorable diameters: two-dimensional nanoparticles for plasmonics. Nano Lett 15:1012–1017CrossRefGoogle Scholar
  27. 27.
    Zhang Q, Li W, Moran C, Zeng J, Chen J, Wen L-P, Xia Y (2010) Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30−200 nm and comparison of their optical properties. J Am Chem Soc 132:11372–11378CrossRefGoogle Scholar
  28. 28.
    Rycenga M, Cobley CM, Zeng J, Li W, Moran CH, Zhang Q, Qin D, Xia Y (2011) Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev 111:3669–3712CrossRefGoogle Scholar
  29. 29.
    Chan GH, Zhao J, Hicks EM, Schatz GC, Van Duyne RP (2007) Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Lett 7:1947–1952CrossRefGoogle Scholar
  30. 30.
    Zhao C, Zhu Y, Su Y, Guan Z, Chen A, Ji X, Gui X, Xiang R, Tang Z (2015) Tailoring plasmon resonances in aluminium nanoparticle arrays fabricated using anodic aluminium oxide. Adv Opt Mater 3:248–256CrossRefGoogle Scholar
  31. 31.
    Ma YW, Zhang LH, Wu ZW, Yi MF, Zhang J, Jian GS (2015) The study of tunable local surface plasmon resonances on Au-Ag and Ag-Au core-shell alloy nanostructure particles with DDA method. Plasmonics 10:1791–1800CrossRefGoogle Scholar
  32. 32.
    Verbruggen SW, Keulemans M, Martens JA, Lenaerts S (2013) Predicting the surface plasmon resonance wavelength of gold-silver alloy nanoparticles. J Phys Chem C 117:19142–19145CrossRefGoogle Scholar
  33. 33.
    Gao C, Hu Y, Wang M, Chi M, Yin Y (2014) Fully alloyed Ag/Au nanospheres: combining the plasmonic property of Ag with the stability of Au. J Am Chem Soc 136:7474–7479CrossRefGoogle Scholar
  34. 34.
    Tuersun P (2016) Simulated localized surface plasmon spectra of single gold and silver nanobars. Optik 127:3466–3470CrossRefGoogle Scholar
  35. 35.
    Liu H, Liu T, Zhang L, Han L, Gao C, Yin Y (2015) Etching-free epitaxial growth of gold on silver nanostructures for high chemical stability and plasmonic activity. Adv Funct Mater 25:5435–5443CrossRefGoogle Scholar
  36. 36.
    Zohar N, Chuntonov L, Haran G (2014) The simplest plasmonic molecules: metal nanoparticle dimers and trimers. J Photochem Photobiol C Photochem Rev 21:26–39CrossRefGoogle Scholar
  37. 37.
    Tian XD, Zhou YD, Thota S, Zou SL, Zhao J (2014) Plasmonic coupling in single silver nanosphere assemblies by polarization-dependent dark-field scattering spectroscopy. J Phys Chem C 118:13801–13808CrossRefGoogle Scholar
  38. 38.
    Halas NJ, Lal S, Chang W-S, Link S, Nordlander P (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev 111:3913–3961CrossRefGoogle Scholar
  39. 39.
    Fang A, White SL, Masitas RA, Zamborini FP, Jain PK (2015) One-to-one correlation between structure and optical response in a heterogeneous distribution of plasmonic constructs. J Phys Chem C 119:24086–24094CrossRefGoogle Scholar
  40. 40.
    Liu J, Kan C, Li Y, Xu H, Ni Y, Shi D (2015) Plasmonic properties of the end-to-end and side-by-side assembled Au nanorods. Plasmonics 10:117–124CrossRefGoogle Scholar
  41. 41.
    Chen TH, Reinhard BM (2016) Assembling color on the nanoscale: multichromatic switchable pixels from plasmonic atoms and molecules. Adv Mater 28:3522–3527CrossRefGoogle Scholar
  42. 42.
    Hentschel M, Saliba M, Vogelgesang R, Giessen H, Alivisatos AP, Liu N (2010) Transition from isolated to collective modes in plasmonic oligomers. Nano Lett 10:2721–2726CrossRefGoogle Scholar
  43. 43.
    Tang Y, Zhang W, Liu J, Zhang L, Huang W, Huo F, Tian D (2015) A plasmonic nanosensor for lipase activity based on enzyme-controlled gold nanoparticles growth in situ. Nanoscale 7:6039–6044CrossRefGoogle Scholar
  44. 44.
    Gulati A, Liao H, Hafner JH (2006) Monitoring gold nanorod synthesis by localized surface plasmon resonance. J Phys Chem B 110:22323–22327CrossRefGoogle Scholar
  45. 45.
    Taz H, Ruther R, Malasi A, Yadavali S, Carr C, Nanda J, Kalyanaraman R (2015) In situ localized surface plasmon resonance (LSPR) spectroscopy to investigate kinetics of chemical bath deposition of CdS thin films. J Phys Chem C 119:5033–5039CrossRefGoogle Scholar
  46. 46.
    Jang GG, Blake P, Roper DK (2013) Rate-limited electroless gold thin film growth: a real-time study. Langmuir 29:5476–5486CrossRefGoogle Scholar
  47. 47.
    Tang B, Xu S, An J, Zhao B, Xu W, Lombardi JR (2009) Kinetic effects of halide ions on the morphological evolution of silver nanoplates. Phys Chem Chem Phys 11:10286–10292CrossRefGoogle Scholar
  48. 48.
    Rodriguez-Lorenzo L, Romo-Herrera JM, Perez-Juste J, Alvarez-Puebla RA, Liz-Marzan LM (2011) Reshaping and LSPR tuning of Au nanostars in the presence of CTAB. J Mater Chem 21:11544–11549CrossRefGoogle Scholar
  49. 49.
    Kedia A, Kumar PS (2013) Controlled reshaping and plasmon tuning mechanism of gold nanostars. J Mater Chem C 1:4540–4549CrossRefGoogle Scholar
  50. 50.
    Tang B, Xu S, Tao J, Wu Y, Xu W, Ozaki Y (2010) Two-dimensional correlation localized surface plasmon resonance spectroscopy for analysis of the interaction between metal nanoparticles and bovine serum albumin. J Phys Chem C 114:20990–20996CrossRefGoogle Scholar
  51. 51.
    Langhammer C, Larsson EM (2012) Nanoplasmonic in situ spectroscopy for catalysis applications. ACS Catal 2:2036–2045CrossRefGoogle Scholar
  52. 52.
    Larsson EM, Langhammer C, Zoric I, Kasemo B (2009) Nanoplasmonic probes of catalytic reactions. Science 326:1091–1094CrossRefGoogle Scholar
  53. 53.
    Larsson EM, Millet J, Gustafsson S, Skoglundh M, Zhdanov VP, Langhammer C (2012) Real time indirect nanoplasmonic in situ spectroscopy of catalyst nanoparticle sintering. ACS Catal 2:238–245CrossRefGoogle Scholar
  54. 54.
    Henry A-I, Bingham JM, Ringe E, Marks LD, Schatz GC, Van Duyne RP (2011) Correlated structure and optical property studies of plasmonic nanoparticles. J Phys Chem C 115:9291–9305CrossRefGoogle Scholar
  55. 55.
    Liu Y, Huang CZ (2013) Real-time dark-field scattering microscopic monitoring of the in situ growth of single ag@hg nanoalloys. ACS Nano 7:11026–11034CrossRefGoogle Scholar
  56. 56.
    Park Y, Lee C, Ryu S, Song H (2015) Ex situ and in situ surface plasmon monitoring of temperature-dependent structural evolution in galvanic replacement reactions at a single-particle level. J Phys Chem C 119:20125–20135CrossRefGoogle Scholar
  57. 57.
    Wang Y, Zou HY, Huang CZ (2015) Real-time monitoring of oxidative etching on single Ag nanocubes via light-scattering dark-field microscopy imaging. Nanoscale 7:15209–15213CrossRefGoogle Scholar
  58. 58.
    Shegai T, Langhammer C (2011) Hydride formation in single palladium and magnesium nanoparticles studied by nanoplasmonic dark-field scattering spectroscopy. Adv Mater 23:4409–4414CrossRefGoogle Scholar
  59. 59.
    Cheng J, Liu Y, Cheng X, He Y, Yeung ES (2010) Real time observation of chemical reactions of individual metal nanoparticles with high-throughput single molecule spectral microscopy. Anal Chem 82:8744–8749CrossRefGoogle Scholar
  60. 60.
    Shi L, Jing C, Ma W, Li D-W, Halls JE, Marken F, Long Y-T (2013) Plasmon resonance scattering spectroscopy at the single-nanoparticle level: real-time monitoring of a click reaction. Angew Chem Int Ed 52:6011–6014CrossRefGoogle Scholar
  61. 61.
    Gao PF, Yuan BF, Gao MX, Li RS, Ma J, Zou HY, Li YF, Li M, Huang CZ (2015) Visual identification of light-driven breakage of the silver-dithiocarbamate bond by single plasmonic nanoprobes. Sci Rep 5:15427CrossRefGoogle Scholar
  62. 62.
    Novo C, Funston AM, Mulvaney P (2008) Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. Nat Nanotechnol 3:598–602CrossRefGoogle Scholar
  63. 63.
    Collins SSE, Cittadini M, Pecharroman C, Martucci A, Mulvaney P (2015) Hydrogen spillover between single gold nanorods and metal oxide supports: a surface plasmon spectroscopy study. ACS Nano 9:7846–7856CrossRefGoogle Scholar
  64. 64.
    Liu N, Tang ML, Hentschel M, Giessen H, Alivisatos AP (2011) Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat Mater 10:631–636CrossRefGoogle Scholar
  65. 65.
    Seo D, Park G, Song H (2012) Plasmonic monitoring of catalytic hydrogen generation by a single nanoparticle probe. J Am Chem Soc 134:1221–1227CrossRefGoogle Scholar
  66. 66.
    Tittl A, Yin X, Giessen H, Tian X-D, Tian Z-Q, Kremers C, Chigrin DN, Liu N (2013) Plasmonic smart dust for probing local chemical reactions. Nano Lett 13:1816–1821CrossRefGoogle Scholar
  67. 67.
    Jing C, Rawson FJ, Zhou H, Shi X, Li W-H, Li D-W, Long Y-T (2014) New insights into electrocatalysis based on plasmon resonance for the real-time monitoring of catalytic events on single gold nanorods. Anal Chem 86:5513–5518CrossRefGoogle Scholar
  68. 68.
    Cennamo N, D’Agostino G, Dona A, Dacarro G, Pallavicini P, Pesavento M, Zeni L (2013) Localized surface plasmon resonance with five-branched gold nanostars in a plastic optical fiber for bio-chemical sensor implementation. Sensors 13:14676–14686CrossRefGoogle Scholar
  69. 69.
    Sherry LJ, Jin RC, Mirkin CA, Schatz GC, Van Duyne RP (2006) Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. Nano Lett 6:2060–2065CrossRefGoogle Scholar
  70. 70.
    Bukasov R, Ali TA, Nordlander P, Shumaker-Parry JS (2010) Probing the plasmonic near-field of gold nanocrescent antennas. ACS Nano 4:6639–6650CrossRefGoogle Scholar
  71. 71.
    Bolduc OR, Masson J-F (2011) Advances in surface plasmon resonance sensing with nanoparticles and thin films: nanomaterials, surface chemistry, and hybrid plasmonic techniques. Anal Chem 83:8057–8062CrossRefGoogle Scholar
  72. 72.
    Chung T, Lee S-Y, Song EY, Chun H, Lee B (2011) Plasmonic nanostructures for nano-scale bio-sensing. Sensors 11:10907–10929CrossRefGoogle Scholar
  73. 73.
    Lin VK, Teo SL, Marty R, Arbouet A, Girard C, Alarcon-Llado E, Liu SH, Han MY, Tripathy S, Mlayah A (2010) Dual wavelength sensing based on interacting gold nanodisk trimers. Nanotechnology 21:305501CrossRefGoogle Scholar
  74. 74.
    Hao F, Nordlander P, Sonnefraud Y, Dorpe PV, Maier SA (2009) Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing. ACS Nano 3:643–652CrossRefGoogle Scholar
  75. 75.
    Zhang S, Bao K, Halas NJ, Xu H, Nordlander P (2011) Substrate-induced fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano Lett 11:1657–1663CrossRefGoogle Scholar
  76. 76.
    Polavarapu L, Liz-Marzan LM (2013) Towards low-cost flexible substrates for nanoplasmonic sensing. Phys Chem Chem Phys 15:5288–5300CrossRefGoogle Scholar
  77. 77.
    Wang H, Chen D, Wei Y, Yu L, Zhang P, Zhao J (2011) A localized surface plasmon resonance light scattering-based sensing of hydroquinone via the formed silver nanoparticles in system. Spectrochim Acta A Mol Biomol Spectrosc 79:2012–2016CrossRefGoogle Scholar
  78. 78.
    Bingham JM, Anker JN, Kreno LE, Van Duyne RP (2010) Gas sensing with high-resolution localized surface plasmon resonance spectroscopy. J Am Chem Soc 132:17358–17359CrossRefGoogle Scholar
  79. 79.
    Kazuma E, Tatsuma T (2014) Localized surface plasmon resonance sensors based on wavelength-tunable spectral dips. Nanoscale 6:2397–2405CrossRefGoogle Scholar
  80. 80.
    Huang D, Hu T, Chen N, Zhang W, Di J (2014) Development of silver/gold nanocages onto indium tin oxide glass as a reagentless plasmonic mercury sensor. Anal Chim Acta 825:51–56CrossRefGoogle Scholar
  81. 81.
    Sugawa K, Tahara H, Yamashita A, Otsuki J, Sagara T, Harumoto T, Yanagida S (2015) Refractive index susceptibility of the plasmonic palladium nanoparticle: potential as the third plasmonic sensing material. ACS Nano 9:1895–1904CrossRefGoogle Scholar
  82. 82.
    Szunerits S, Boukherroub R (2012) Sensing using localised surface plasmon resonance sensors. Chem Commun 48:8999–9010CrossRefGoogle Scholar
  83. 83.
    Feuz L, Jonsson MP, Hook F (2012) Material-selective surface chemistry for nanoplasmonic sensors: optimizing sensitivity and controlling binding to local hot spots. Nano Lett 12:873–879CrossRefGoogle Scholar
  84. 84.
    Chen P, Liedberg B (2014) Curvature of the localized surface plasmon resonance peak. Anal Chem 86:7399–7405CrossRefGoogle Scholar
  85. 85.
    Lodewijks K, Van Roy W, Borghs G, Lagae L, Van Dorpe P (2012) Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements. Nano Lett 12:1655–1659CrossRefGoogle Scholar
  86. 86.
    Ho FH, Wu Y-H, Ujihara M, Imae T (2012) A solution-based nano-plasmonic sensing technique by using gold nanorods. Analyst 137:2545–2548CrossRefGoogle Scholar
  87. 87.
    Liu Y, Zhao Y, Wang Y, Li CM (2015) Polyamine-capped gold nanorod as a localized surface Plasmon resonance probe for rapid and sensitive copper(II) ion detection. J Colloid Interface Sci 439:7–11CrossRefGoogle Scholar
  88. 88.
    Wang G, Chen Z, Chen L (2011) Mesoporous silica-coated gold nanorods: towards sensitive colorimetric sensing of ascorbic acid via target-induced silver overcoating. Nanoscale 3:1756–1759CrossRefGoogle Scholar
  89. 89.
    Ma X, Truong PL, Anh NH, Sim SJ (2015) Single gold nanoplasmonic sensor for clinical cancer diagnosis based on specific interaction between nucleic acids and protein. Biosens Bioelectron 67:59–65CrossRefGoogle Scholar
  90. 90.
    Ruemmele JA, Hall WP, Ruvuna LK, Van Duyne RP (2013) A localized surface plasmon resonance imaging instrument for multiplexed biosensing. Anal Chem 85:4560–4566CrossRefGoogle Scholar
  91. 91.
    Chen P, Chung MT, McHugh W, Nidetz R, Li Y, Fu J, Cornell TT, Shanley TP, Kurabayashi K (2015) Multiplex serum cytokine immunoassay using nanoplasmonic biosensor microarrays. ACS Nano 9:4173–4181CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials and Key Laboratory for the Synthesis and Application of Organic Functional MoleculesMinistry of Education and College of Chemistry and Chemical Engineering, Hubei UniversityWuhanChina
  2. 2.National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean ProductionWuhan Textile UniversityWuhanChina
  3. 3.Institute for Frontier MaterialsDeakin UniversityGeelongAustralia

Personalised recommendations