Wide-Field Surface Plasmon Resonance Microscopy for In-Situ Characterization of Nanoparticle Suspensions

Chapter

Abstract

During the past two decades, nanomaterials have had an enormous diversity of applications in different industrial fields and fundamental research. Some of these nanomaterials are specifically engineered to exhibit unique optical, electrical, or other physical or chemical characteristics. Owing to these attributes, the products containing various engineered nanoparticles (NP) cover large segments of the market from clothing to electronics and healthcare products [1]. The rapid development of nanotechnologies, their industrial applications, and related nanosafety concerns demand sensitive analytical methods for the identification and analysis of nanoparticles (NPs) in very different media [2]. In the same time, there are serious concerns on possible toxicity of nanoparticles for humans and environment [3]. Engineered NPs (ENPs) have to be analyzed not only during their production, in pure and concentrated form, but also at trace concentrations in environment, drinking water and food, healthcare and pharmacological products, biological fluids, etc. Ideally, such a technique should provide a possibility to detect NPs at the level of single particles and deliver information on their concentration, core and surface chemical composition, size, and shape [2–4].

Notes

Acknowledgments

The work was supported by FP7 EC Project “NANODETECTOR” (FP7-NMP-2011-SME-5, #280478) and Thermo-SPR (MWFK). We are grateful to all project partners for discussions and suggestions. An assistance of Dr. K. Tonder and V. Scherbahn is acknowledged.

References

  1. 1.
    Stark WJ, Stoessel PR, Wohlleben W, Hafner A (2015) Industrial applications of nanoparticles. Chem Soc Rev 44:5793–5805Google Scholar
  2. 2.
    Babick F, Mielke J, Wohlleben W, Weigel S, Hodoroaba V-D (2016) How reliably can a material be classified as a nanomaterial? Available particle-sizing techniques at work. J Nanopart Res 18:158Google Scholar
  3. 3.
    Love SA, Maurer-Jones MA, Thompson JW, Lin YS, Haynes CL (2012) Assessing nanoparticle toxicity. Annu Rev Anal Chem 5:181–205Google Scholar
  4. 4.
    Bleeker EAJ, de Jong WH, Geertsma RE, Groenewold M, Heugens EHW, Koers-Jacquemijns M et al (2013) Considerations on the EU definition of a nanomaterial: science to support policy making. Regul Toxicol Pharmacol 65:119–125Google Scholar
  5. 5.
    Nič M, Jirát J, Košata B, Jenkins A, McNaught A (eds) (2009) IUPAC compendium of chemical terminology: gold book. 2.1.0. IUPAC, Research Triagle ParkGoogle Scholar
  6. 6.
    Berne BJ, Pecora R (2000) Dynamic light scattering: with applications to chemistry, biology, and physics. Dover Publications, MineolaGoogle Scholar
  7. 7.
    Jiang J, Oberdörster G, Biswas P (2008) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89Google Scholar
  8. 8.
    Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM (2008) Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 101:239–253Google Scholar
  9. 9.
    Medebach M, Moitzi C, Freiberger N, Glatter O (2007) Dynamic light scattering in turbid colloidal dispersions: a comparison between the modified flat-cell light-scattering instrument and 3D dynamic light-scattering instrument. J Colloid Interface Sci 305:88–93Google Scholar
  10. 10.
    Urban C, Schurtenberger P (1998) Characterization of turbid colloidal suspensions using light scattering techniques combined with cross-correlation methods. J Colloid Interface Sci 207:150–158Google Scholar
  11. 11.
    Pusey PN (1999) Suppression of multiple scattering by photon cross-correlation techniques. Curr Opin Colloid Interface Sci 4:177–185Google Scholar
  12. 12.
    Pine DJ, Weitz DA, Chaikin PM, Herbolzheimer E (1988) Diffusing wave spectroscopy. Phys Rev Lett 60:1134Google Scholar
  13. 13.
    Bressel L, Hass R, Reich O (2013) Particle sizing in highly turbid dispersions by photon density wave spectroscopy. J Quant Spectrosc Radiat Transf 126:122–129Google Scholar
  14. 14.
    Makra I, Terejánszky P, Gyurcsányi RE (2015) A method based on light scattering to estimate the concentration of virus particles without the need for virus particle standards. MethodsX 2:91–99Google Scholar
  15. 15.
    Quinten M (2011) Optical properties of nanoparticle systems: Mie and beyond. Wiley-VCH, WeinheimGoogle Scholar
  16. 16.
    Mappes T, Jahr N, Csaki A, Vogler N, Popp J, Fritzsche W (2012) The invention of immersion ultramicroscopy in 1912-the birth of nanotechnology? Angew Chem Int Ed 51:11208–11212Google Scholar
  17. 17.
    Xiao L, Qiao Y, He Y, Yeung ES (2010) Three dimensional orientational imaging of nanoparticles with darkfield microscopy. Anal Chem 82:5268–5274Google Scholar
  18. 18.
    Hole P, Sillence K, Hannell C, Maguire CM, Roesslein M, Suarez G et al (2013) Interlaboratory comparison of size measurements on nanoparticles using nanoparticle tracking analysis (NTA). J Nanopart Res 15:2101Google Scholar
  19. 19.
    Filipe V, Hawe A, Jiskoot W (2010) Critical evaluation of nanoparticle tracking analysis (NTA) by nanosight for the measurement of nanoparticles and protein aggregates. Pharm Res 27:796–810Google Scholar
  20. 20.
    Gardiner C, Ferreira YJ, Dragovic RA, Redman CWG, Sargent IL (2013) Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis. J Extracell Vesicles 2:19671Google Scholar
  21. 21.
    Kramberger P, Ciringer M, Štrancar A, Peterka M (2012) Evaluation of nanoparticle tracking analysis for total virus particle determination. Virol J 9:265Google Scholar
  22. 22.
    Tian X, Nejadnik MR, Baunsgaard D, Henriksen A, Rischel C, Jiskoot W (2016) A comprehensive evaluation of nanoparticle tracking analysis (nanosight) for characterization of proteinaceous submicron particles. J Pharm Sci 105:3366–3375Google Scholar
  23. 23.
    Gallego-Urrea JA, Tuoriniemi J, Hassellöv M (2011) Applications of particle-tracking analysis to the determination of size distributions and concentrations of nanoparticles in environmental, biological and food samples. TrAC Trends Anal Chem 30:473–483Google Scholar
  24. 24.
    Giavazzi F, Brogioli D, Trappe V, Bellini T, Cerbino R (2009) Scattering information obtained by optical microscopy: differential dynamic microscopy and beyond. Phys Rev E 80:031403Google Scholar
  25. 25.
    Cerbino R, Trappe V (2008) Differential dynamic microscopy: probing wave vector dependent dynamics with a microscope. Phys Rev Lett 100:188102Google Scholar
  26. 26.
    Martinez VA, Besseling R, Croze OA, Tailleur J, Reufer M, Schwarz-Linek J et al (2012) Differential dynamic microscopy: a high-throughput method for characterizing the motility of microorganisms. Biophys J 103:1637–1647Google Scholar
  27. 27.
    Wilson LG, Martinez VA, Schwarz-Linek J, Tailleur J, Bryant G, Pusey PN et al (2011) Differential dynamic microscopy of bacterial motility. Phys Rev Lett 106:018101Google Scholar
  28. 28.
    Haiss W, Thanh NTK, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV−vis spectra. Anal Chem 79:4215–4221Google Scholar
  29. 29.
    Paramelle D, Sadovoy A, Gorelik S, Free P, Hobley J, Fernig DG (2014) A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra. Analyst 139:4855Google Scholar
  30. 30.
    Mutavdžić D, Xu J, Thakur G, Triulzi R, Kasas S, Jeremić M et al (2011) Determination of the size of quantum dots by fluorescence spectroscopy. Analyst 136:2391Google Scholar
  31. 31.
    Yim S-Y, Park J-H, Kim M-G (2015) Dark-field spectral imaging microscope for localized surface plasmon resonance-based biosensing. Proc SPIE 9523:952307Google Scholar
  32. 32.
    Boyer D (2002) Photothermal imaging of nanometer-sized metal particles among scatterers. Science 297:1160–1163Google Scholar
  33. 33.
    Gaiduk A, Ruijgrok PV, Yorulmaz M, Orrit M (2010) Detection limits in photothermal microscopy. Chem Sci 1:343Google Scholar
  34. 34.
    Diwakar PK, Loper KH, Matiaske A-M, Hahn DW (2012) Laser-induced breakdown spectroscopy for analysis of micro and nanoparticles. J Anal At Spectrom 27:1110Google Scholar
  35. 35.
    Gimenez Y, Busser B, Trichard F, Kulesza A, Laurent JM, Zaun V et al (2016) 3D imaging of nanoparticle distribution in biological tissue by laser-induced breakdown spectroscopy. Sci Rep 6:29936Google Scholar
  36. 36.
    Schwertfeger DM, Velicogna JR, Jesmer AH, Scroggins RP, Princz JI (2016) Single particle-inductively coupled plasma mass spectroscopy analysis of metallic nanoparticles in environmental samples with large dissolved analyte fractions. Anal Chem 88:9908–9914Google Scholar
  37. 37.
    Laborda F, Bolea E, Jiménez-Lamana J (2014) Single particle inductively coupled plasma mass spectrometry: a powerful tool for nanoanalysis. Anal Chem 86:2270–2278Google Scholar
  38. 38.
    Agbabiaka A, Wiltfong M, Park C (2013) Small angle X-ray scattering technique for the particle size distribution of nonporous nanoparticles. J Nanopart 2013:1–11Google Scholar
  39. 39.
    Li T, Senesi AJ, Lee B (2016) Small angle X-ray scattering for nanoparticle research. Chem Rev 116:11128–11180Google Scholar
  40. 40.
    Chu B, Liu T (2000) Characterization of nanoparticles by scattering techniques. J Nanopart Res 2:29–41Google Scholar
  41. 41.
    Roberts GS, Kozak D, Anderson W, Broom MF, Vogel R, Trau M (2010) Tunable nano/micropores for particle detection and discrimination: scanning ion occlusion spectroscopy. Small 6:2653–2658Google Scholar
  42. 42.
    Roberts GS, Yu S, Zeng Q, Chan LCL, Anderson W, Colby AH et al (2012) Tunable pores for measuring concentrations of synthetic and biological nanoparticle dispersions. Biosens Bioelectron 31:17–25Google Scholar
  43. 43.
    Wang Y, Kececi K, Mirkin MV, Mani V, Sardesai N, Rusling JF (2013) Resistive-pulse measurements with nanopipettes: detection of Au nanoparticles and nanoparticle-bound anti-peanut IgY. Chem Sci 4:655–663Google Scholar
  44. 44.
    Makra I, Gyurcsányi RE (2014) Electrochemical sensing with nanopores: a mini review. Electrochem Commun 43:55–59Google Scholar
  45. 45.
    Weatherall E, Willmott GR (2015) Applications of tunable resistive pulse sensing. Analyst 140:3318–3334Google Scholar
  46. 46.
    Yang L, Yamamoto T (2016) Quantification of virus particles using nanopore-based resistive-pulse sensing techniques. Front Microbiol 7:1500Google Scholar
  47. 47.
    Cheng W, Compton RG (2014) Electrochemical detection of nanoparticles by ‘nano-impact’ methods. TrAC Trends Anal Chem 58:79–89Google Scholar
  48. 48.
    Rees NV (2014) Electrochemical insight from nanoparticle collisions with electrodes: a mini-review. Electrochem Commun 43:83–86Google Scholar
  49. 49.
    Sokolov SV, Eloul S, Kätelhön E, Batchelor-McAuley C, Compton RG (2017) Electrode–particle impacts: a users guide. Phys Chem Chem Phys 19:28–43Google Scholar
  50. 50.
    Sokolov SV, Bartlett TR, Fair P, Fletcher S, Compton RG (2016) Femtomolar detection of silver nanoparticles by flow-enhanced direct-impact voltammetry at a microelectrode array. Anal Chem 88:8908–8912Google Scholar
  51. 51.
    DeBlois RW, Bean CP, Wesley RK (1977) Electrokinetic measurements with submicron particles and pores by the resistive pulse technique. J Colloid Interface Sci 61:323–335Google Scholar
  52. 52.
    Aliano A, Cicero G, Nili H, Green NG, García-Sánchez P, Ramos A et al (2012) AFM in liquids. In: Bhushan B (ed) Encyclopedia of nanotechnology. Springer, Dordrecht, pp 83–89Google Scholar
  53. 53.
    Baalousha M, Prasad A, Lead JR (2014) Quantitative measurement of the nanoparticle size and number concentration from liquid suspensions by atomic force microscopy. Environ Sci: Processes Impacts 16:1338Google Scholar
  54. 54.
    Baalousha M, Kammer FVD, Motelica-Heino M, Le Coustumer P (2005) Natural sample fractionation by FlFFF–MALLS–TEM: sample stabilization, preparation, pre-concentration and fractionation. J Chromatogr A 1093:156–166Google Scholar
  55. 55.
    Takahashi Y, Kumatani A, Shiku H, Matsue T (2017) Scanning probe microscopy for nanoscale electrochemical imaging. Anal Chem 89:342–357Google Scholar
  56. 56.
    Polcari D, Dauphin-Ducharme P, Mauzeroll J (2016) Scanning electrochemical microscopy: a comprehensive review of experimental parameters from 1989 to 2015. Chem Rev 116:13234–13278Google Scholar
  57. 57.
    Sun P, Laforge FO, Mirkin MV (2007) Scanning electrochemical microscopy in the 21st century. Phys Chem Chem Phys 9:802–823Google Scholar
  58. 58.
    Momotenko D, Byers JC, McKelvey K, Kang M, Unwin PR (2015) High-speed electrochemical imaging. ACS Nano 9:8942–8952Google Scholar
  59. 59.
    Williamson MJ, Tromp RM, Vereecken PM, Hull R, Ross FM (2003) Dynamic microscopy of nanoscale cluster growth at the solid–liquid interface. Nat Mater 2:532–536Google Scholar
  60. 60.
    Radisic A, Vereecken PM, Hannon JB, Searson PC, Ross FM (2006) Quantifying electrochemical nucleation and growth of nanoscale clusters using real-time kinetic data. Nano Lett 6:238–242Google Scholar
  61. 61.
    Hodnik N, Dehm G, Mayrhofer KJJ (2016) Importance and challenges of electrochemical in situ liquid cell electron microscopy for energy conversion research. Acc Chem Res 49:2015–2022Google Scholar
  62. 62.
    Stuart EJE, Tschulik K, Omanović D, Cullen JT, Jurkschat K, Crossley A et al (2013) Electrochemical detection of commercial silver nanoparticles: identification, sizing and detection in environmental media. Nanotechnology 24:444002Google Scholar
  63. 63.
    Moretto LM, Kalcher K (eds) (2015) Environmental analysis by electrochemical sensors and biosensors. Springer, New YorkGoogle Scholar
  64. 64.
    Wagner T, Lazar J, Schnakenberg U, Böker A (2016) In situ electrochemical impedance spectroscopy of electrostatically driven selective gold nanoparticle adsorption on block copolymer lamellae. ACS Appl Mater Interfaces 8:27282–27290Google Scholar
  65. 65.
    Proll G, Markovic G, Fechner P, Proell F, Gauglitz G (2017) Reflectometric interference spectroscopy. In: Rasooly A, Prickril B (eds) Biosensors and biodetection. Springer, New York, pp 207–220Google Scholar
  66. 66.
    Hänel C, Gauglitz G (2002) Comparison of reflectometric interference spectroscopy with other instruments for label-free optical detection. Anal Bioanal Chem 372:91–100Google Scholar
  67. 67.
    Gauglitz G (2005) Multiple reflectance interference spectroscopy measurements made in parallel for binding studies. Rev Sci Instrum 76:062224Google Scholar
  68. 68.
    Terrettaz S, Stora T, Duschl C, Vogel H (1993) Protein binding to supported lipid membranes: investigation of the cholera toxin-ganglioside interaction by simultaneous impedance spectroscopy and surface plasmon resonance. Langmuir 9:1361–1369Google Scholar
  69. 69.
    Olsson ALJ, Quevedo IR, He D, Basnet M, Tufenkji N (2013) Using the quartz crystal microbalance with dissipation monitoring to evaluate the size of nanoparticles deposited on surfaces. ACS Nano 7:7833–7843Google Scholar
  70. 70.
    Chen Q, Xu S, Liu Q, Masliyah J, Xu Z (2016) QCM-D study of nanoparticle interactions. Adv Colloid Interf Sci 233:94–114Google Scholar
  71. 71.
    Tellechea E, Johannsmann D, Steinmetz NF, Richter RP, Reviakine I (2009) Model-independent analysis of QCM data on colloidal particle adsorption. Langmuir 25:5177–5184Google Scholar
  72. 72.
    Teigell Beneitez N, Missinne J, Schleipen J, Orsel J, Prins MWJ, Van Steenberge G (2014) Polymer slab waveguides for the optical detection of nanoparticles in evanescent field based biosensors. Proc SPIE 8954:89540QGoogle Scholar
  73. 73.
    Özdemir ŞK, Zhu J, Yang X, Peng B, Yilmaz H, He L et al (2014) Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser. Proc Natl Acad Sci 111:E3836–E3844Google Scholar
  74. 74.
    Baaske M, Vollmer F (2012) Optical resonator biosensors: molecular diagnostic and nanoparticle detection on an integrated platform. ChemPhysChem 13:427–436Google Scholar
  75. 75.
    Fujimaki M, Nomura K, Sato K, Kato T, Gopinath SCB, Wang X et al (2010) Detection of colored nanomaterials using evanescent field-based waveguide sensors. Opt Express 18:15732Google Scholar
  76. 76.
    Gopinath SCB, Awazu K, Fujimaki M (2010) Detection of influenza viruses by a waveguide-mode sensor. Anal Methods 2:1880Google Scholar
  77. 77.
    Liedberg B, Nylander C, Lunstrom I (1983) Surface plasmon resonance for gas detection and biosensing. Sensors Actuators 4:299–304Google Scholar
  78. 78.
    Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493Google Scholar
  79. 79.
    Jung LS, Campbell CT, Chinowsky TM, Mar MN, Yee SS (1998) Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir 14:5636–5648Google Scholar
  80. 80.
    Rebe Raz S, Leontaridou M, Bremer MGEG, Peters R, Weigel S (2012) Development of surface plasmon resonance-based sensor for detection of silver nanoparticles in food and the environment. Anal Bioanal Chem 403:2843–2850Google Scholar
  81. 81.
    Klemm F, Johnson R, Mirsky VM (2015) Binding of protein nanoparticles to immobilized receptors. Sensors Actuators B Chem 208:616–621Google Scholar
  82. 82.
    Canovi M, Lucchetti J, Stravalaci M, Re F, Moscatelli D, Bigini P et al (2012) Applications of surface plasmon resonance (SPR) for the characterization of nanoparticles developed for biomedical purposes. Sensors 12:16420–16432Google Scholar
  83. 83.
    Rupert DLM, Lässer C, Eldh M, Block S, Zhdanov VP, Lotvall JO et al (2014) Determination of exosome concentration in solution using surface plasmon resonance spectroscopy. Anal Chem 86:5929–5936Google Scholar
  84. 84.
    Rupert DLM, Shelke GV, Emilsson G, Claudio V, Block S, Lässer C et al (2016) Dual-wavelength surface plasmon resonance for determining the size and concentration of sub-populations of extracellular vesicles. Anal Chem 88:9980–9988Google Scholar
  85. 85.
    Nizamov S, Mirsky VM (2011) Self-referencing SPR-biosensors based on penetration difference of evanescent waves. Biosens Bioelectron 28:263–269Google Scholar
  86. 86.
    Axelrod D (1989) Chapter 9. Total internal reflection fluorescence microscopy. In: Methods in cell biology. Elsevier, Imprint: Academic Press, pp 245–270Google Scholar
  87. 87.
    Block S, Fast BJ, Lundgren A, Zhdanov VP, Höök F (2016) Two-dimensional flow nanometry of biological nanoparticles for accurate determination of their size and emission intensity. Nat Commun 7:12956Google Scholar
  88. 88.
    Olsson T, Zhdanov VP, Höök F (2015) Total internal reflection fluorescence microscopy for determination of size of individual immobilized vesicles: theory and experiment. J Appl Phys 118:064702Google Scholar
  89. 89.
    Agnarsson B, Wayment-Steele HK, Höök F, Kunze A (2016) Monitoring of single and double lipid membrane formation with high spatiotemporal resolution using evanescent light scattering microscopy. Nanoscale 8:19219–19223Google Scholar
  90. 90.
    Agnarsson B, Lundgren A, Gunnarsson A, Rabe M, Kunze A, Mapar M et al (2015) Evanescent light-scattering microscopy for label-free interfacial imaging: from single Sub-100 nm vesicles to live cells. ACS Nano 9:11849–11862Google Scholar
  91. 91.
    Byrne GD, Pitter MC, Zhang J, Falcone FH, Stolnik S, Somekh MG (2008) Total internal reflection microscopy for live imaging of cellular uptake of sub-micron non-fluorescent particles. J Microsc 231:168–179Google Scholar
  92. 92.
    Velinov T, Asenovska Y, Marinkova D, Yotova L, Stoicova S, Bivolarska M et al (2011) Total internal reflection imaging of microorganism adhesion using an oil immersion objective. Colloids and Surfaces B: Biointerfaces 88(1):407–412Google Scholar
  93. 93.
    Wang W, Tao N (2014) Detection, counting, and imaging of single nanoparticles. Anal Chem 86:2–14Google Scholar
  94. 94.
    Zybin A, Kuritsyn YA, Gurevich EL, Temchura VV, Überla K, Niemax K (2009) Real-time detection of single immobilized nanoparticles by surface plasmon resonance imaging. Plasmonics 5:31–35Google Scholar
  95. 95.
    Yang C-T, Wu L, Liu X, Tran NT, Bai P, Liedberg B et al (2016) Exploiting surface-plasmon-enhanced light scattering for the design of ultrasensitive biosensing modality. Anal Chem 88:11924–11930Google Scholar
  96. 96.
    Rengevych OV, Beketov GV, Ushenin YV (2014) Visualization of submicron Si-rods by SPR-enhanced total internal reflection microscopy. Semicond Phys Quantum Electron Optoelectron 17(4):368–373Google Scholar
  97. 97.
    Loison O, Fort E (2013) Transmission surface plasmon resonance microscopy. Appl Phys Lett 103:133110Google Scholar
  98. 98.
    Meyer SA, Le REC, Etchegoin PG (2011) Combining surface plasmon resonance (SPR) spectroscopy with surface-enhanced Raman scattering (SERS). Anal Chem 83:2337–2344Google Scholar
  99. 99.
    Meyer SA, Auguié B, Le Ru EC, Etchegoin PG (2012) Combined SPR and SERS microscopy in the Kretschmann configuration. J Phys Chem A 116:1000–1007Google Scholar
  100. 100.
    Roy S, Kim J-H, Kellis JT, Poulose AJ, Robertson CR, Gast AP (2002) Surface plasmon resonance/surface plasmon enhanced fluorescence: an optical technique for the detection of multicomponent macromolecular adsorption at the solid/liquid interface. Langmuir 18:6319–6323Google Scholar
  101. 101.
    Balaa K, Devauges V, Goulam Y, Studer V, Lévêque-Fort S, Fort E (2009) Live cell imaging with surface plasmon-mediated fluorescence microscopy. SPIE-OSA 7367:736710Google Scholar
  102. 102.
    Thariani R, Yager P (2010) Imaging of surfaces by concurrent surface plasmon resonance and surface plasmon resonance-enhanced fluorescence. Peccoud J, editor. PLoS One 5:e9833Google Scholar
  103. 103.
    Avci O, Ünlü N, Özkumur A, Ünlü M (2015) Interferometric reflectance imaging sensor (IRIS) – a platform technology for multiplexed diagnostics and digital detection. Sensors 15:17649–17665Google Scholar
  104. 104.
    Sevenler D, Ünlü NL, Ünlü MS (2015) Nanoparticle biosensing with interferometric reflectance imaging. In: Vestergaard MC, Kerman K, Hsing I-M, Tamiya E (eds) Nanobiosensors and nanobioanalyses. Springer, Tokyo, pp 81–95Google Scholar
  105. 105.
    Ortega-Arroyo J, Kukura P (2012) Interferometric scattering microscopy (iSCAT): new frontiers in ultrafast and ultrasensitive optical microscopy. Phys Chem Chem Phys 14:15625Google Scholar
  106. 106.
    Piliarik M, Sandoghdar V (2014) Direct optical sensing of single unlabelled proteins and super-resolution imaging of their binding sites. Nat Commun 5:4495Google Scholar
  107. 107.
    Lobinski R, Szpunar J (eds) (2003) Hyphenated techniques in speciation analysis. Royal Society of Chemistry, CambridgeGoogle Scholar
  108. 108.
    Cazes J (ed) (2010) Encyclopedia of chromatography, 3rd edn. CRC Press, Boca RatonGoogle Scholar
  109. 109.
    Messaud FA, Sanderson RD, Runyon JR, Otte T, Pasch H, Williams SKR (2009) An overview on field-flow fractionation techniques and their applications in the separation and characterization of polymers. Prog Polym Sci 34:351–368Google Scholar
  110. 110.
    Baalousha M, Stolpe B, Lead JR (2011) Flow field-flow fractionation for the analysis and characterization of natural colloids and manufactured nanoparticles in environmental systems: a critical review. J Chromatogr A 1218:4078–4103Google Scholar
  111. 111.
    Scott D, Harding SE, Rowe A (eds) (2005) Introduction to differential sedimentation. analytical ultracentrifugation. Royal Society of Chemistry, Cambridge, pp 270–290Google Scholar
  112. 112.
    Scott DJ, Harding SE, Rowe AJ, Royal Society of Chemistry (Great Britain) (eds) (2005) Analytical ultracentrifugation: techniques and methods. RSC Publishing, CambridgeGoogle Scholar
  113. 113.
    Krpetić Ž, Davidson AM, Volk M, Lévy R, Brust M, Cooper DL (2013) High-resolution sizing of monolayer-protected gold clusters by differential centrifugal sedimentation. ACS Nano 7:8881–8890Google Scholar
  114. 114.
    Anderson W, Kozak D, Coleman VA, Jämting ÅK, Trau M (2013) A comparative study of submicron particle sizing platforms: accuracy, precision and resolution analysis of polydisperse particle size distributions. J Colloid Interface Sci 405:322–330Google Scholar
  115. 115.
    Poda AR, Bednar AJ, Kennedy AJ, Harmon A, Hull M, Mitrano DM et al (2011) Characterization of silver nanoparticles using flow-field flow fractionation interfaced to inductively coupled plasma mass spectrometry. J Chromatogr A 1218:4219–4225Google Scholar
  116. 116.
    Baalousha M, Kammer FVD, Motelica-Heino M, Hilal HS, Le Coustumer P (2006) Size fractionation and characterization of natural colloids by flow-field flow fractionation coupled to multi-angle laser light scattering. J Chromatogr A 1104:272–281Google Scholar
  117. 117.
    Rothenhauesler B, Knoll W (1988) Surface plasmon microscopy. Lett Nat 332:615–617Google Scholar
  118. 118.
    Brockman JM, Nelson BP, Corn RM (2000) Surface plasmon resonance imaging measurements of ultrathin organic films. Annu Rev Phys Chem 51:41–63Google Scholar
  119. 119.
    Campbell C, Kim G (2007) SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics. Biomaterials 28:2380–2392Google Scholar
  120. 120.
    Boecker D, Zybin A, Niemax K, Grunwald C, Mirsky VM (2008) Noise reduction by multiple referencing in surface plasmon resonance imaging. Rev Sci Instrum 79:023110Google Scholar
  121. 121.
    Rich RL, Cannon MJ, Jenkins J, Pandian P, Sundaram S, Magyar R et al (2008) Extracting kinetic rate constants from surface plasmon resonance array systems. Anal Biochem 373:112–120Google Scholar
  122. 122.
    Halpern AR, Wood JB, Wang Y, Corn RM (2014) Single-nanoparticle near-infrared surface plasmon resonance microscopy for real-time measurements of DNA hybridization adsorption. ACS Nano 8:1022Google Scholar
  123. 123.
    Viitala L, Maley AM, Fung HWM, Corn RM, Viitala T, Murtomäki L (2016) Surface plasmon resonance imaging microscopy of liposomes and liposome-encapsulated gold nanoparticles. J Phys Chem C 120:25958–25966Google Scholar
  124. 124.
    Cho K, Fasoli JB, Yoshimatsu K, Shea KJ, Corn RM (2015) Measuring Melittin uptake into hydrogel nanoparticles with near-infrared single nanoparticle surface plasmon resonance microscopy. Anal Chem 87:4973–4979Google Scholar
  125. 125.
    Wang S, Shan X, Patel U, Huang X, Lu J, Li J et al (2010) Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance. Proc Natl Acad Sci 107:16028–16032Google Scholar
  126. 126.
    Huang B, Yu F, Zare RN (2007) Surface plasmon resonance imaging using a high numerical aperture microscope objective. Anal Chem 79:2979–2983Google Scholar
  127. 127.
    Somekh MG, Liu S, Velinov TS, See CW (2000) High-resolution scanning surface-plasmon microscopy. Appl Opt 39:6279–6287Google Scholar
  128. 128.
    Peterson AW, Halter M, Tona A, Plant AL (2014) High resolution surface plasmon resonance imaging for single cells. BMC Cell Biol 15:35Google Scholar
  129. 129.
    Peterson AW, Halter M, Plant AL, Elliott JT (2016) Surface plasmon resonance microscopy: achieving a quantitative optical response. Rev Sci Instrum 87:093703Google Scholar
  130. 130.
    Vander R, Lipson SG (2009) High-resolution surface-plasmon resonance real-time imaging. Opt Lett 34:37–39Google Scholar
  131. 131.
    Shan X, Díez-Pérez I, Wang L, Wiktor P, Gu Y, Zhang L et al (2012) Imaging the electrocatalytic activity of single nanoparticles. Nat Nanotechnol 7:668–672Google Scholar
  132. 132.
    Fang Y, Wang W, Wo X, Luo Y, Yin S, Wang Y et al (2014) Plasmonic imaging of electrochemical oxidation of single nanoparticles. J Am Chem Soc 136:12584–12587Google Scholar
  133. 133.
    Yu H, Shan X, Wang S, Chen H, Tao N (2014) Plasmonic imaging and detection of single DNA molecules. ACS Nano 8:3427–3433Google Scholar
  134. 134.
    Fang Y, Wang H, Yu H, Liu X, Wang W, Chen H-Y et al (2016) Plasmonic imaging of electrochemical reactions of single nanoparticles. Acc Chem Res 49:2614–2624Google Scholar
  135. 135.
    Wo X, Luo Y, Tao N, Wang W, Chen H-Y (2016) Measuring the number concentration of arbitrarily-shaped gold nanoparticles with surface plasmon resonance microscopy. SCIENCE CHINA Chem 59:843–847Google Scholar
  136. 136.
    Wang Y, Shan X, Wang H, Wang S, Tao N (2017) Plasmonic imaging of surface electrochemical reactions of single gold nanowires. J Am Chem Soc 139:1376–1379Google Scholar
  137. 137.
    Maley AM, Terada Y, Onogi S, Shea KJ, Miura Y, Corn RM (2016) Measuring protein binding to individual hydrogel nanoparticles with single-nanoparticle surface plasmon resonance imaging microscopy. J Phys Chem C 120:16843–16849Google Scholar
  138. 138.
    Sasian JM (1992) Image plane tilt in optical systems. Opt Eng 31:527–532Google Scholar
  139. 139.
    Smith WJ (2000) Modern optical engineering: the design of optical systems, 3rd edn. McGraw-Hill, New YorkGoogle Scholar
  140. 140.
    Laplatine L, Leroy L, Calemczuk R, Baganizi D, Marche PN, Roupioz Y et al (2014) Spatial resolution in prism-based surface plasmon resonance microscopy. Opt Express 22:22771Google Scholar
  141. 141.
    Schasfoort RBM, Tudos AJ (2008) Handbook of surface plasmon resonance. RSC Publishing, CambridgeGoogle Scholar
  142. 142.
    Nizamov S, Scherbahn V, Mirsky VM (2016) Detection and quantification of single engineered nanoparticles in complex samples using template matching in wide-field surface plasmon microscopy. Anal Chem 88:10206–10214Google Scholar
  143. 143.
    Sidorenko I, Nizamov S, Hergenröder R, Zybin A, Kuzmichev A, Kiwull B et al (2016) Computer assisted detection and quantification of single adsorbing nanoparticles by differential surface plasmon microscopy. Microchim Acta 183:101–109Google Scholar
  144. 144.
    Scherbahn V, Nizamov S, Mirsky VM (2016) Plasmonic detection and visualization of directed adsorption of charged single nanoparticles to patterned surfaces. Microchim Acta 183:2837–2845Google Scholar
  145. 145.
    Nizamov S, Kasian O, Mirsky VM (2016) Individual detection and electrochemically assisted identification of adsorbed nanoparticles by using surface plasmon microscopy. Angew Chem Int Ed 55:7247–7251Google Scholar
  146. 146.
    Nizamov S, Scherbahn V, Mirsky VM (2015) Self-referencing SPR-sensor based on integral measurements of light intensity reflected by arbitrarily distributed sensing and referencing spots. Sensors Actuators B Chem 207:740–747Google Scholar
  147. 147.
    Nizamov S, Scherbahn V, Mirsky VM (2017) Ionic referencing in surface plasmon microscopy: visualization of the difference in surface properties of patterned monomolecular layers. Anal Chem 89:3873–3878Google Scholar
  148. 148.
    Zybin A, Shpacovitch V, Skolnik J, Hergenröder R (2017) Optimal conditions for SPR-imaging of nano-objects. Sensors Actuators B Chem 239:338–342Google Scholar
  149. 149.
    Weichert F, Gaspar M, Timm C, Zybin A, Gurevich EL, Engel M et al (2010) Signal analysis and classification for surface plasmon assisted microscopy of nanoobjects. Sensors Actuators B Chem 151:281–290Google Scholar
  150. 150.
    Radke RJ, Andra S, Al-Kofahi O, Roysam B (2005) Image change detection algorithms: a systematic survey. IEEE Trans Image Process 14:294–307Google Scholar
  151. 151.
    Lapresta-Fernández A, Salinas-Castillo A, Anderson de la Llana S, Costa-Fernández JM, Domínguez-Meister S, Cecchini R et al (2014) A general perspective of the characterization and quantification of nanoparticles: imaging, spectroscopic, and separation techniques. Crit Rev Solid State Mater Sci 39:423–458Google Scholar
  152. 152.
    von der Kammer F, Legros S, Hofmann T, Larsen EH, Loeschner K (2011) Separation and characterization of nanoparticles in complex food and environmental samples by field-flow fractionation. TrAC Trends Anal Chem 30:425–436Google Scholar
  153. 153.
    Lewis JP (1995) Fast template matching. Vision interface. Canadian Image Processing and Pattern Recognition Society, Quebec, pp 15–19Google Scholar
  154. 154.
    Wo X, Li Z, Jiang Y, Li M, Su Y, Wang W et al (2016) Determining the absolute concentration of nanoparticles without calibration factor by visualizing the dynamic processes of interfacial adsorption. Anal Chem 88:2380–2385Google Scholar
  155. 155.
    Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1170Google Scholar
  156. 156.
    Shpacovitch V, Sidorenko I, Lenssen J, Temchura V, Weichert F, Müller H et al (2017) Application of the PAMONO-sensor for quantification of microvesicles and determination of nano-particle size distribution. Sensors 17:244Google Scholar
  157. 157.
    Shpacovitch V, Temchura V, Matrosovich M, Hamacher J, Skolnik J, Libuschewski P et al (2015) Application of surface plasmon resonance imaging technique for the detection of single spherical biological submicrometer particles. Anal Biochem 486:62–69Google Scholar
  158. 158.
    Demetriadou A, Kornyshev AA (2015) Principles of nanoparticle imaging using surface plasmons. New J Phys 17:013041Google Scholar
  159. 159.
    Demetriadou A (2015) The impact of natural modes in plasmonic imaging. Sci Rep 5:18247Google Scholar
  160. 160.
    Son T, Kim D (2015) Theoretical approach to surface plasmon scattering microscopy for single nanoparticle detection in near infrared region. Proc SPIE 9340:93400WGoogle Scholar
  161. 161.
    Lozovski V (2012) Visualization of Nano-sized objects by scattering of surface plasmon polariton theoretical aspects of the problem. J Comput Theor Nanosci 9:859–863Google Scholar
  162. 162.
    Gurevich EL, Temchura VV, Überla K, Zybin A (2011) Analytical features of particle counting sensor based on plasmon assisted microscopy of nano objects. Sensors Actuators B Chem 160:1210–1215Google Scholar
  163. 163.
    Yu H, Shan X, Wang S, Chen H, Tao N (2014) Molecular scale origin of surface plasmon resonance biosensors. Anal Chem 86:8992–8997Google Scholar
  164. 164.
    Concentrative properties of aqueous solutions: density, refractive index, freezing point depression, and viscosity. In: CRC Handbook of Chemistry and Physics, 87th ed Editor-in-Chief: David R. Lide (NIST). CRC Press/Taylor and Francis Group: Boca Raton, FL. 2006. 2608 pp. ISBN 0-8493-0487-3.Google Scholar
  165. 165.
    Syal K, Wang W, Shan X, Wang S, Chen H-Y, Tao N (2015) Plasmonic imaging of protein interactions with single bacterial cells. Biosens Bioelectron 63:131–137Google Scholar
  166. 166.
    Yang Y, Yu H, Shan X, Wang W, Liu X, Wang S et al (2015) Label-free tracking of single organelle transportation in cells with nanometer precision using a plasmonic imaging technique. Small 11:2878–2884Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Biotechnology, Department of NanobiotechnologyBrandenburg University of Technology Cottbus-SenftenbergSenftenbergGermany

Personalised recommendations