In Situ X-Ray Studies of Crystallization Kinetics and Ordering in Functional Organic and Hybrid Materials

  • Bin Yang
  • Jong K. Keum
  • David B. Geohegan
  • Kai XiaoEmail author


In-Situ and time-resolved X-ray scattering and diffraction is dedicated to yielding the change of structural information as the materials are processed or grown in a controlled environment. In this chapter, we introduce the use of in situ and time-resolved X-ray techniques to understand molecular packing, crystal orientation, and phase transformation during the synthesis and processing of functional organic semiconductors, organic nanowires, and hybrid perovskite materials.



This research was conducted at the Center for Nanophase Materials Sciences (CNMS), which is a DOE Office of Science User Facility. B.Y. acknowledges support for the writing of this chapter while at LBNL from the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231.


  1. 1.
    Chen JD et al (2015) Single-junction polymer solar cells exceeding 10% power conversion efficiency. Adv Mater 27:1035–1041CrossRefGoogle Scholar
  2. 2.
    Dou L, Liu Y, Hong Z, Li G, Yang Y (2015) Low-bandgap near-IR conjugated polymers/molecules for organic electronics. Chem Rev 115:12633–12665CrossRefGoogle Scholar
  3. 3.
    Guo X, Baumgarten M, Müllen K (2013) Designing π-conjugated polymers for organic electronics. Prog Polym Sci 38:1832–1908CrossRefGoogle Scholar
  4. 4.
    Bujak P et al (2013) Polymers for electronics and spintronics. Chem Soc Rev 42:8895–8999CrossRefGoogle Scholar
  5. 5.
    Yuan Y, Xiao Z, Yang B, Huang J (2014) Arising applications of ferroelectric materials in photovoltaic devices. J Mater Chem A 2:6027–6041CrossRefGoogle Scholar
  6. 6.
    Yau CP et al (2014) Influence of the electron deficient co-monomer on the optoelectronic properties and photovoltaic performance of dithienogermole-based co-polymers. Adv Funct Mater 24:678–687CrossRefGoogle Scholar
  7. 7.
    Tan WY et al (2014) Lending triarylphosphine oxide to phenanthroline: a facile approach to high-performance organic small-molecule cathode interfacial material for organic photovoltaics utilizing air-stable cathodes. Adv Funct Mater 24:6540–6547CrossRefGoogle Scholar
  8. 8.
    Wang Y, Yang X, Li H, Sheng C (2016) Bright single-mode random laser from a concentrated solution of π-conjugated polymers. Opt Lett 41:269–272CrossRefGoogle Scholar
  9. 9.
    Lin Q, Armin A, Nagiri RCR, Burn PL, Meredith P (2015) Electro-optics of perovskite solar cells. Nat Photon 9:106–112CrossRefGoogle Scholar
  10. 10.
    Yao D, Zhang X, Mongin O, Paul F, Paul-Roth CO (2016) Synthesis and characterization of new conjugated fluorenyl-porphyrin dendrimers for optics. Chem Eur J 22:5583–5597CrossRefGoogle Scholar
  11. 11.
    Ramadan KS, Sameoto D, Evoy S (2014) A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Mater Struct 23:033001CrossRefGoogle Scholar
  12. 12.
    Sriplai N et al (2015) Ferromagnetism in metal-free polymers. IEEE Magn Lett 6:1–4CrossRefGoogle Scholar
  13. 13.
    Yang B et al (2013) Room-temperature organic ferromagnetism in the crystalline poly (3-hexylthiophene): phenyl-C61-butyric acid methyl ester blend film. Polymer 54:490–494CrossRefGoogle Scholar
  14. 14.
    Zhen S, Lu B, Xu J, Zhang S, Li Y (2014) Poly (mono-, bi-or trifuran): effect of oligomer chain length on the electropolymerization performances and polymer properties. RSC Adv 4:14001–14012CrossRefGoogle Scholar
  15. 15.
    Yang B, Shao M, Keum J, Geohegan D, Xiao K (2016) Semiconductor materials for solar photovoltaic cells. Springer, Cham, pp 197–228CrossRefGoogle Scholar
  16. 16.
    Guo F et al (2012) A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection. Nat Nanotechnol 7:798–802CrossRefGoogle Scholar
  17. 17.
    Caironi M, Anthopoulos TD, Noh YY, Zaumseil J (2013) Organic and hybrid materials for flexible electronics. Adv Mater 25:4208–4209CrossRefGoogle Scholar
  18. 18.
    Fujisaki Y et al (2014) Transparent nanopaper-based flexible organic thin-film transistor array. Adv Funct Mater 24:1657–1663CrossRefGoogle Scholar
  19. 19.
    Kettle J et al (2015) Three dimensional corrugated organic photovoltaics for building integration; improving the efficiency, oblique angle and diffuse performance of solar cells. Energy Environ Sci 8:3266–3273CrossRefGoogle Scholar
  20. 20.
    Li ZR (2015) Organic light-emitting materials and devices. CRC Press, Boca RatonGoogle Scholar
  21. 21.
    Chiba A, Nara T (2014) 2-D localization of radio frequency identification tags from measurements of the weighted integrals of the magnetic flux density. IEEE Trans Magn 50:1–8CrossRefGoogle Scholar
  22. 22.
    Sekine C, Tsubata Y, Yamada T, Kitano M, Doi S (2014) Recent progress of high performance polymer OLED and OPV materials for organic printed electronics. Sci Technol Adv Mater 15:034203CrossRefGoogle Scholar
  23. 23.
    Das S et al (2016) Low thermal budget, photonic-cured compact TiO2 layers for high-efficiency perovskite solar cells. J Mater Chem A 4:9685–9690CrossRefGoogle Scholar
  24. 24.
    Yang B et al (2012) Tuning the energy level offset between donor and acceptor with ferroelectric dipole layers for increased efficiency in bilayer organic photovoltaic cells. Adv Mater 24:1455–1460CrossRefGoogle Scholar
  25. 25.
    Yang B et al (2013) Solution-processed fullerene-based organic Schottky junction devices for large-open-circuit-voltage organic solar cells. Adv Mater 25(4):571CrossRefGoogle Scholar
  26. 26.
    Yang B, Cox J, Yuan Y, Guo F, Huang J (2011) Increased efficiency of low band gap polymer solar cells at elevated temperature and its origins. Appl Phys Lett 99:206Google Scholar
  27. 27.
    Yang B, Xiao Z, Huang J (2014) Polymer aggregation correlated transition from Schottky-junction to bulk heterojunction organic solar cells. Appl Phys Lett 104:143304CrossRefGoogle Scholar
  28. 28.
  29. 29.
    Li M et al (2017) Solution-processed organic tandem solar cells with power conversion efficiencies >12%. Nat Photonics 11:85–90CrossRefGoogle Scholar
  30. 30.
    Yuan Y et al (2014) Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method. Nat Commun 5:3005CrossRefGoogle Scholar
  31. 31.
    Keum JK, Zuo F, Hsiao BS (2008) Formation and stability of shear-induced shish-kebab structure in highly entangled melts of UHMWPE/HDPE blends. Macromolecules 41:4766–4776CrossRefGoogle Scholar
  32. 32.
    Xiao K, Yoon M, Rondinone AJ, Payzant EA, Geohegan DB (2012) Understanding the metal-directed growth of single-crystal M-TCNQF4 organic nanowires with time-resolved, in situ X-ray diffraction and first-principles theoretical studies. J Am Chem Soc 134:14353–14361CrossRefGoogle Scholar
  33. 33.
    Yang B, Yuan Y, Huang J (2014) Reduced bimolecular charge recombination loss in thermally annealed bilayer heterojunction photovoltaic devices with large external quantum efficiency and fill factor. J Phys Chem C 118:5196–5202Google Scholar
  34. 34.
    Yang F, Shtein M, Forrest SR (2005) Controlled growth of a molecular bulk heterojunction photovoltaic cell. Nat Mater 4:37–41CrossRefGoogle Scholar
  35. 35.
    Xiao K et al (2009) Metastable copper-phthalocyanine single-crystal nanowires and their use in fabricating high-performance field-effect transistors. Adv Funct Mater 19:3776–3780CrossRefGoogle Scholar
  36. 36.
    Dar MI et al (2016) Origin of unusual bandgap shift and dual emission in organic-inorganic lead halide perovskites. Sci Adv 2:e1601156CrossRefGoogle Scholar
  37. 37.
    Dou L et al (2015) Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science 349:1518–1521CrossRefGoogle Scholar
  38. 38.
    Eperon GE et al (2016) Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science 354:861–865CrossRefGoogle Scholar
  39. 39.
    Jeon NJ et al (2015) Compositional engineering of perovskite materials for high-performance solar cells. Nature 517:476–480CrossRefGoogle Scholar
  40. 40.
    Tsai H et al (2016) High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536:312–316CrossRefGoogle Scholar
  41. 41.
    Zhou H et al (2014) Interface engineering of highly efficient perovskite solar cells. Science 345:542–546CrossRefGoogle Scholar
  42. 42.
    Bella F et al (2016) Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers. Science 354:203–206CrossRefGoogle Scholar
  43. 43.
    Frost JM et al (2014) Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett 14:2584–2590CrossRefGoogle Scholar
  44. 44.
    Green MA, Ho-Baillie A, Snaith HJ (2014) The emergence of perovskite solar cells. Nat Photonics 8:506–514CrossRefGoogle Scholar
  45. 45.
    Nie W et al (2015) High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347:522–525CrossRefGoogle Scholar
  46. 46.
    Yang B, Mahjouri-Samani M, Rouleau CM, Geohegan DB, Xiao K (2016) Low temperature synthesis of hierarchical TiO2 nanostructures for high performance perovskite solar cells by pulsed laser deposition. Phys Chem Chem Phys 18:27067–27072CrossRefGoogle Scholar
  47. 47.
    Yang B et al (2015) Perovskite solar cells with near 100% internal quantum efficiency based on large single crystalline grains and vertical bulk heterojunctions. J Am Chem Soc 137:9210–9213CrossRefGoogle Scholar
  48. 48.
    Du M-H (2014) Efficient carrier transport in halide perovskites: theoretical perspectives. J Mater Chem A 2:9091–9098CrossRefGoogle Scholar
  49. 49.
    Yang B et al (2015) Controllable growth of perovskite films by room-temperature air exposure for efficient planar heterojunction photovoltaic cells. Angew Chem Int Ed 54:14862–14865CrossRefGoogle Scholar
  50. 50.
    Yang B et al (2016) Observation of nanoscale morphological and structural degradation in perovskite solar cells by in situ TEM. ACS Appl Mater Interfaces 8:32333–32340CrossRefGoogle Scholar
  51. 51.
    Divitini G et al (2016) In situ observation of heat-induced degradation of perovskite solar cells. Nat Energy 1:15012CrossRefGoogle Scholar
  52. 52.
    Wang D, Wright M, Elumalai NK, Uddin A (2016) Stability of perovskite solar cells. Sol Energy Mater Sol Cells 147:255–275CrossRefGoogle Scholar
  53. 53.
    Yang J, Siempelkamp BD, Mosconi E, De Angelis F, Kelly TL (2015) Origin of the thermal instability in CH3NH3PbI3 thin films deposited on ZnO. Chem Mater 27:4229–4236CrossRefGoogle Scholar
  54. 54.
    Kim J et al (2016) Nucleation and growth control of HC(NH2)2PbI3 for planar perovskite solar cell. J Phys Chem C 120:11262–11267CrossRefGoogle Scholar
  55. 55.
    Saparov B, Mitzi DB (2016) Organic–inorganic perovskites: structural versatility for functional materials design. Chem Rev 116:4558–4596CrossRefGoogle Scholar
  56. 56.
    Kowarik S (2016) Thin film growth studies using time-resolved x-ray scattering. J Phys Condens Matter 29:043003CrossRefGoogle Scholar
  57. 57.
    Gu X et al (2016) Compact roll-to-roll coater for in situ X-ray diffraction characterization of organic electronics printing. ACS Appl Mater Interfaces 8:1687–1694CrossRefGoogle Scholar
  58. 58.
    Watanabe T, Hosokai T, Koganezawa T, Yoshimoto N (2012) In situ real-time X-ray diffraction during thin film growth of pentacene. Mol Cryst Liq Cryst 566:18–21CrossRefGoogle Scholar
  59. 59.
    Smilgies DM et al (2013) Look fast: crystallization of conjugated molecules during solution shearing probed in situ and in real time by X-ray scattering. Phys Status Solidi RRL 7:177–179Google Scholar
  60. 60.
    Nahm R, Engstrom J (2017) Who’s on first? Tracking in real time the growth of multiple crystalline phases of an organic semiconductor: tetracene on SiO2. J Chem Phys 146:052815CrossRefGoogle Scholar
  61. 61.
    Beyer P et al (2014) Lattice matching as the determining factor for molecular tilt and multilayer growth mode of the nanographene hexa-peri-hexabenzocoronene. ACS Appl Mater Interfaces 6:21484–21493CrossRefGoogle Scholar
  62. 62.
    Yang B et al (2016) Deciphering halogen competition in organometallic halide perovskite growth. J Am Chem Soc 138:5028–5035CrossRefGoogle Scholar
  63. 63.
    Zykov A et al (2017) Diffusion and nucleation in multilayer growth of PTCDI-C8 studied with in situ X-ray growth oscillations and real-time small angle X-ray scattering. J Chem Phys 146:052803CrossRefGoogle Scholar
  64. 64.
    Yoshimoto N, Watanabe T, Kikuchi M, Koganezawa T, Hirosawa I (2014) In-situ observation of 2-dimensional X-ray diffraction of organic thin-film growth by synchrotron radiation. Hyomen Kagaku 35:190–195CrossRefGoogle Scholar
  65. 65.
    Frank C et al (2013) Real-time X-ray scattering studies on temperature dependence of perfluoropentacene thin film growth. J Appl Phys 114:043515CrossRefGoogle Scholar
  66. 66.
    Lin Y-Y, Gundlach D, Nelson SF, Jackson TN (1997) Pentacene-based organic thin-film transistors. IEEE Trans Electron Dev 44:1325–1331CrossRefGoogle Scholar
  67. 67.
    Zhang M, Irfan, Ding H, Gao Y, Tang CW (2010) Organic Schottky barrier photovoltaic cells based on MoOx/C60. Appl Phys Lett 96:87Google Scholar
  68. 68.
    Chen W-B et al (2007) Improving efficiency of organic photovoltaic cells with pentacene-doped CuPc layer. Appl Phys Lett 91:191109CrossRefGoogle Scholar
  69. 69.
    He B et al (2014) New form of an old natural dye: bay-annulated indigo (BAI) as an excellent electron accepting unit for high performance organic semiconductors. J Am Chem Soc 136:15093–15101CrossRefGoogle Scholar
  70. 70.
    Das S et al (2015) High-performance flexible perovskite solar cells by using a combination of ultrasonic spray-coating and low thermal budget photonic curing. ACS Photon 2:680–686CrossRefGoogle Scholar
  71. 71.
    Pudas M, Halonen N, Granat P, Vähäkangas J (2005) Gravure printing of conductive particulate polymer inks on flexible substrates. Prog Org Coat 54:310–316CrossRefGoogle Scholar
  72. 72.
    Sirringhaus H et al (2000) High-resolution inkjet printing of all-polymer transistor circuits. Science 290:2123–2126CrossRefGoogle Scholar
  73. 73.
    Kim Y et al (2005) Device annealing effect in organic solar cells with blends of regioregular poly (3-hexylthiophene) and soluble fullerene. Appl Phys Lett 86:063502CrossRefGoogle Scholar
  74. 74.
    Hexemer A et al (2010) J Phys Conf Ser 247:012007CrossRefGoogle Scholar
  75. 75.
    Müllen K, Pisula W (2015) Donor-acceptor polymers. J Am Chem Soc 137:9503–9505CrossRefGoogle Scholar
  76. 76.
    Kronemeijer AJ et al (2012) A selenophene-based low-bandgap donor–acceptor polymer leading to fast ambipolar logic. Adv Mater 24:1558–1565CrossRefGoogle Scholar
  77. 77.
    Sonar P et al (2011) High mobility organic thin film transistor and efficient photovoltaic devices using versatile donor–acceptor polymer semiconductor by molecular design. Energy Environ Sci 4:2288–2296CrossRefGoogle Scholar
  78. 78.
    Ajayaghosh A (2003) Donor–acceptor type low band gap polymers: polysquaraines and related systems. Chem Soc Rev 32:181–191CrossRefGoogle Scholar
  79. 79.
    Rivnay J et al (2009) Large modulation of carrier transport by grain-boundary molecular packing and microstructure in organic thin films. Nat Mater 8:952–958CrossRefGoogle Scholar
  80. 80.
    Madec M-B et al (2010) Enhanced reproducibility of inkjet printed organic thin film transistors based on solution processable polymer-small molecule blends. J Mater Chem 20:9155–9160CrossRefGoogle Scholar
  81. 81.
    Peisert H et al (2001) Order on disorder: copper phthalocyanine thin films on technical substrates. J Appl Phys 90:466–469CrossRefGoogle Scholar
  82. 82.
    Crossland EJ et al (2012) Anisotropic charge transport in spherulitic poly (3-hexylthiophene) films. Adv Mater 24:839–844CrossRefGoogle Scholar
  83. 83.
    O’Connor B et al (2011) Anisotropic structure and charge transport in highly strain-aligned regioregular poly (3-hexylthiophene). Adv Funct Mater 21:3697–3705CrossRefGoogle Scholar
  84. 84.
    Fraboni B et al (2009) Solution-grown, macroscopic organic single crystals exhibiting three-dimensional anisotropic charge-transport properties. Adv Mater 21:1835–1839CrossRefGoogle Scholar
  85. 85.
    Jang K, Jung IG, Nam HJ, Jung D-Y, Son SU (2009) One-dimensional organometallic molecular wires via assembly of Rh(CO)2Cl(amine): chemical control of Interchain distances and optical properties. J Am Chem Soc 131:12046–12047CrossRefGoogle Scholar
  86. 86.
    Palmer LC, Stupp SI (2008) Molecular self-assembly into one-dimensional nanostructures. Acc Chem Res 41:1674–1684CrossRefGoogle Scholar
  87. 87.
    Palmer LC et al (2014) Long-range ordering of highly charged self-assembled nanofilaments. J Am Chem Soc 136:14377–14380CrossRefGoogle Scholar
  88. 88.
    Lee J et al (2014) Donor–acceptor alternating copolymer nanowires for highly efficient organic solar cells. Adv Mater 26:6706–6714CrossRefGoogle Scholar
  89. 89.
    Lei Y et al (2016) Solution-processed donor-acceptor polymer nanowire network semiconductors for high-performance field-effect transistors. Sci Rep 6:24476CrossRefGoogle Scholar
  90. 90.
    Liu H et al (2005) Field emission properties of large-area nanowires of organic charge-transfer complexes. J Am Chem Soc 127:1120–1121CrossRefGoogle Scholar
  91. 91.
    Xiao K et al (2007) Single-crystal organic nanowires of copper–tetracyanoquinodimethane: synthesis, patterning, characterization, and device applications. Angew Chem Int Ed 46:2650–2654CrossRefGoogle Scholar
  92. 92.
    Xiao K et al (2008) Selective patterned growth of single-crystal ag–TCNQ nanowires for devices by vapor–solid chemical reaction. Adv Funct Mater 18:3043–3048CrossRefGoogle Scholar
  93. 93.
    Xiao K et al (2009) Growth, patterning, and one-dimensional electron-transport properties of self-assembled Ag-TCNQF4 organic nanowires. Chem Mater 21:4275–4281CrossRefGoogle Scholar
  94. 94.
    Xiao K, Ivanov IN, Puretzky AA, Liu Z, Geohegan DB (2006) Directed integration of tetracyanoquinodimethane-Cu organic nanowires into prefabricated device architectures. Adv Mater 18:2184–2188CrossRefGoogle Scholar
  95. 95.
    Cho H et al (2015) Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350:1222–1225CrossRefGoogle Scholar
  96. 96.
    Zhu H et al (2015) Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat Mater 14:636–642CrossRefGoogle Scholar
  97. 97.
    Fu A, Yang P (2015) Organic-inorganic perovskites: lower threshold for nanowire lasers. Nat Mater 14:557–558CrossRefGoogle Scholar
  98. 98.
    Dou L et al (2014) Solution-processed hybrid perovskite photodetectors with high detectivity. Nat Commun 5:5404CrossRefGoogle Scholar
  99. 99.
    Hu X et al (2014) High-performance flexible broadband photodetector based on organolead halide perovskite. Adv Funct Mater 24:7373–7380CrossRefGoogle Scholar
  100. 100.
    Fang Y, Huang J (2015) Resolving weak light of sub-picowatt per square centimeter by hybrid perovskite photodetectors enabled by noise reduction. Adv Mater 27:2804–2810CrossRefGoogle Scholar
  101. 101.
    Chen Q et al (2013) Planar heterojunction perovskite solar cells via vapor-assisted solution process. J Am Chem Soc 136:622–625CrossRefGoogle Scholar
  102. 102.
    Liu M, Johnston MB, Snaith HJ (2013) Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501:395–398CrossRefGoogle Scholar
  103. 103.
    Wang Q et al (2014) Qualifying composition dependent p and n self-doping in CH3NH3PbI3. Appl Phys Lett 105:163508CrossRefGoogle Scholar
  104. 104.
    Simpson MJ, Doughty B, Yang B, Xiao K, Ma Y-Z (2016) Imaging electronic trap states in perovskite thin films with combined fluorescence and femtosecond transient absorption microscopy. J Phys Chem Lett 7:1725–1731CrossRefGoogle Scholar
  105. 105.
    Simpson MJ, Doughty B, Yang B, Xiao K, Ma Y-Z (2015) Spatial localization of excitons and charge carriers in hybrid perovskite thin films. J Phys Chem Lett 6:3041–3047CrossRefGoogle Scholar
  106. 106.
    Pistor P, Borchert J, Fränzel W, Csuk R, Scheer R (2014) Monitoring the phase formation of coevaporated lead halide perovskite thin films by in situ x-ray diffraction. J Phys Chem Lett 5:3308–3312CrossRefGoogle Scholar
  107. 107.
    Pool VL et al (2017) Thermal engineering of FAPbI3 perovskite material via radiative thermal annealing and in situ XRD. Nat Commun 8:14075CrossRefGoogle Scholar
  108. 108.
    Schelhas LT et al (2016) Monitoring a silent phase transition in CH3NH3PbI3 solar cells via operando X-ray diffraction. ACS Energy Lett 1:1007–1012CrossRefGoogle Scholar
  109. 109.
    Miyadera T et al (2015) Crystallization dynamics of organolead halide perovskite by real-time X-ray diffraction. Nano Lett 15:5630–5634CrossRefGoogle Scholar
  110. 110.
    Eperon GE et al (2014) Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci 7:982–988CrossRefGoogle Scholar
  111. 111.
    Jacobsson TJ et al (2016) Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells. Energy Environ Sci 9:1706–1724CrossRefGoogle Scholar
  112. 112.
    Kim YC et al (2016) Beneficial effects of PbI2 incorporated in organo-lead halide perovskite solar cells. Adv Energy Mater 6:1502104CrossRefGoogle Scholar
  113. 113.
    Yang B, Geohegan DB, Xiao K (2017) Encyclopedia of inorganic and bioinorganic chemistry. In: Perovskite materials: solar cell and optoelectronic applications. John Wiley & Sons, Ltd, Hoboken, NJGoogle Scholar
  114. 114.
    Rossander LH et al (2016) In situ X-ray scattering of perovskite solar cell active layers roll-to-roll coated on flexible substrates. CrystEngComm 18:5083–5088CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Bin Yang
    • 1
    • 2
  • Jong K. Keum
    • 1
    • 3
  • David B. Geohegan
    • 1
  • Kai Xiao
    • 1
    • 4
    Email author
  1. 1.Center for Nanophase Materials SciencesOak Ridge National LaboratoryOak RidgeUSA
  2. 2.The Molecular FoundryLawrence Berkeley National LaboratoryBerkeleyUSA
  3. 3.Neutron Scattering DivisionOak Ridge National LaboratoryOak RidgeUSA
  4. 4.Department of Electrical Engineering and Computer ScienceUniversity of TennesseeKnoxvilleUSA

Personalised recommendations