Quartz Crystal Microbalance Application for Characterization of Nanomaterials In Situ

  • Victor S. PopovEmail author
  • Alexander Sopilniak


Quartz crystal microbalance (QCM) or quartz microbalance (QMB) as an in situ precise method for mass control allows vast research of many processes of hetero-phasic mass transfer.



Atomic Force Microscopy


Chemical Vapor Deposition


Electrochemical Quartz Crystal Microbalance


Graphene Oxide




Multiwalled Carbon Nano Tubes


Natural Organic Matter










Physical Vapor Deposition


Quartz Crystal Microbalance


Quartz Crystal Microbalance with Dissipation Monitoring


Quartz Crystal Resonator


Quantum Dot


Quartz Microbalance


Self-Assembled Monolayers


Scanning Electron Microscopy


Scanning Probe Microscopy


Scanning Tunneling Microscope


Single-Walled Carbon Nano Tubes


Transmission Electron Microscopy



Constant of the resonator parameters


Dissipation factor [−]


Resonance frequency [1/T]


Natural vibration frequency of the QCR [1/T]


Thickness of film [L]


Thickness of quartz [L]


Number of harmonics [−]


Area of oscillation in the QCR [L2]


Change in dissipation [−]


Change in frequency [1/T]


Change in mass [M]


Viscosity of the film [M·L−1·T−1]


Viscosity of liquid [M·L−1·T−1]


Elastic modulus [M·L−1·T−2]


Density of coated film [M·L−3]


Density of liquid [M·L−3]


Density of quartz [M·L−3]


Decay time constant [T]


  1. 1.
    Curie J, Curie P (1880) Développement Par Pression de L’électricite Polaire Dans Les Cristaux Hémièdres À Faces Inclinées. Comptes Rendus l’Academie Des Sci 91:294–295Google Scholar
  2. 2.
    Lippman G (1881) Sur Le Principe de La Conservation de L’électricité, Ou Second Principe de La Théorie Des Phénomènes Électriques. Comptes Rendus l’Academie Des Sci. 92:1049–1051Google Scholar
  3. 3.
    Curie J, Curie P (1882) Déformations Électriques Du Quartz. Comptes Rendus l’Académie Des Sci 95:914–917Google Scholar
  4. 4.
    Sauerbrey G (1959) Verwendung von Schvangquarzen Zur Wag-Ung Dunner Schichten Und Zur Mikrowagung. Zeitschrift Fur Phys 155(2):206–222CrossRefGoogle Scholar
  5. 5.
    Czanderna AW, Lu C (1984) Applications of Piezoelectric quartz crystal microbalances. In: Lu C, Czanderna AW (eds) Methods phenom, vol 7. Elsevier, Amsterdam, The NetherlandsGoogle Scholar
  6. 6.
    Kim H (2003) Atomic layer deposition of metal and nitride thin films: current research efforts and applications for semiconductor device processing. J Vac Sci Technol B Microelectron Nanometer Struct 21(6):2231CrossRefGoogle Scholar
  7. 7.
    Petosa AR, Jaisi DP, Quevedo IR, Elimelech M, Tufenkji N (2010) Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environ Sci Technol 44(17):6532–6549CrossRefGoogle Scholar
  8. 8.
    Wang X, Ding B, Sun G, Wang M, Yu J (2013) Electro-spinning/netting: a strategy for the fabrication of three-dimensional polymer Nano-fiber/nets. Prog Mater Sci 58(8):1173–1243CrossRefGoogle Scholar
  9. 9.
    Ding B, Wang M, Wang X, Yu J, Sun G (2010) Electrospun nanomaterials for ultrasensitive sensors. Mater Today 13(11):16–27CrossRefGoogle Scholar
  10. 10.
    Radomska A, Leszczyszyn J, Radomski M (2016) The Nanopharmacology and Nanotoxicology of nanomaterials: new opportunities and challenges. Adv Clin Exp Med 25(1):151–162CrossRefGoogle Scholar
  11. 11.
    Li L, Mu Q, Yan B (2010) Analytical strategies for detecting nanoparticle – protein interactions. Analyst 135:1519–1530CrossRefGoogle Scholar
  12. 12.
    Ariga K, Yamauchi Y, Ji Q, Yonamine Y, Hill JP (2014) Research update: mesoporous sensor Nanoarchitectonics. APL Mater 2(3):30701CrossRefGoogle Scholar
  13. 13.
    Wang L, Sun Y, Li Z, Wu A, Wei G (2016) Bottom-up synthesis and sensor applications of biomimetic nanostructures. Materials (Basel) 9(1):53CrossRefGoogle Scholar
  14. 14.
    de la Escosura-Muñiz A, Parolo C, Merkoçi A (2010) Immunosensing using nanoparticles. Mater Today 13(7–8):24–34CrossRefGoogle Scholar
  15. 15.
    Cea P, Martín S, González-Orive A, Osorio HM, Quintín P, Herrer L (2016) Nanofabrication and electrochemical characterization of self-assembled monolayers sandwiched between metal nanoparticles and electrode surfaces. J Chem Educ 93(8):1441–1445CrossRefGoogle Scholar
  16. 16.
    Hahm J-I (2013) Biomedical detection via macro- and Nano-sensors fabricated with metallic and semiconducting oxides. J Biomed Nanotechnol 9(1):1–25CrossRefGoogle Scholar
  17. 17.
    Afzal A, Iqbal N, Mujahid A, Schirhagl R (2013) Advanced vapor recognition materials for selective and fast responsive surface acoustic wave sensors: a review. Anal Chim Acta 787:36–49CrossRefGoogle Scholar
  18. 18.
    Bhakta SA, Evans E, Benavidez TE, Garcia CD (2015) Protein adsorption onto nanomaterials for the development of biosensors and analytical devices: a review. Anal Chim Acta 872:7–25CrossRefGoogle Scholar
  19. 19.
    Krizkova S, Heger Z, Zalewska M, Moulick A, Adam V, Kizek R (2015) Nanotechnologies in protein microarrays. Nanomedicine 10(17):2743–2755CrossRefGoogle Scholar
  20. 20.
    Wark AW, Lee J, Kim S, Faisal SN, Lee HJ (2010) Bioaffinity detection of pathogens on surfaces. J Ind Eng Chem 16(2):169–177CrossRefGoogle Scholar
  21. 21.
    Li Z, Yu Y, Li Z, Wu T (2015) A review of biosensing techniques for detection of trace carcinogen contamination in food products. Anal Bioanal Chem 407(10):2711–2726CrossRefGoogle Scholar
  22. 22.
    Chen Q, Xu S, Liu Q, Masliyah J, Xu Z (2016) QCM-D Study of nanoparticle interactions. Adv Colloid Interf Sci 233:94–114CrossRefGoogle Scholar
  23. 23.
    Höök F, Kasemo B, Nylander T, Fant C, Sott K, Elwing H (2001) Variations in coupled water, viscoelastic properties, and film thickness of a Mefp-1 protein film during adsorption and cross-linking: a quartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study. Anal Chem 73(24):5796–5804CrossRefGoogle Scholar
  24. 24.
    Rodahl M, Kasemo B (1996) On the measurement of thin liquid Overlayers with the quartz-crystal microbalance. Sensors Actuators A Phys 54:448–456CrossRefGoogle Scholar
  25. 25.
    Voinova MV, Rodahl M, Jonson M, Kasemo B (1999) Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces: continuum mechanics approach. Phys Scr 59(5):391–396CrossRefGoogle Scholar
  26. 26.
    P-G S, Kuo X-R (2014) Low-humidity sensing properties of carboxylic acid functionalized carbon nanomaterials measured by a quartz crystal microbalance. Sensors Actuators A Phys 205:126–132CrossRefGoogle Scholar
  27. 27.
    Marrazza G (2014) Piezoelectric biosensors for organophosphate and carbamate pesticides: a review. Biosensors 4(3):301–317CrossRefGoogle Scholar
  28. 28.
    Popov VS, Subcheva EN, Shelaev AV, Pavelko RG, Sevastyanov VG, Kuznetsov NT (2014) Scanning probe microscope-quartz crystal microbalances integrated system for in-situ study of sensor properties of microamounts of nanomaterials. Theor Found Chem Eng 48(4):518–523CrossRefGoogle Scholar
  29. 29.
    Bykov A, Shelaev A (2008) Scanning probe microscope combined with device for measuring mass and dissipative properties. Patent RU 2407021C2Google Scholar
  30. 30.
    Barsan MM, David M, Florescu M, Ţugulea L, Brett CMA (2014) A new self-assembled layer-by-layer glucose biosensor based on chitosan biopolymer entrapped enzyme with nitrogen doped graphene. Bioelectrochemistry 99:46–52CrossRefGoogle Scholar
  31. 31.
    Du X, Jiang D, Hao N, Qian J, Dai L, Zhou L, Hu J, Wang K (2016) Building a three-dimensional Nano–bio Interface for Aptasensing: an analytical methodology based on steric hindrance initiated signal amplification effect. Anal Chem 88(19):9622–9629CrossRefGoogle Scholar
  32. 32.
    McWilliams A (2014) Nanotechnology: a realistic market assessment. BCC Research, Wellesley, MAGoogle Scholar
  33. 33.
    Jang K, You J, Park C, Park H, Choi J, Choi C-H, Park J, Lee H, Na S (2016) Ultra-sensitive detection of zinc oxide nanowires using a quartz crystal microbalance and phosphoric acid DNA. Nanotechnology 27(36):365501CrossRefGoogle Scholar
  34. 34.
    Jang K, Park C, You J, Choi J, Park H, Park J, Lee H, Choi C-H, Na S (2016) Highly sensitive, direct and real-time detection of silver nanowires by using a quartz crystal microbalance. Nanotechnology 27(47):475506CrossRefGoogle Scholar
  35. 35.
    Jang K, Park J, Lee S, You J, Park C, Lee J, Park W, Yun J, Ahn S, Na S (2015) Situ and fast detection of single-walled carbon nanotubes by using DNA mediated aggregation method and quartz crystal microbalance. J Appl Phys 118(3):34510CrossRefGoogle Scholar
  36. 36.
    Dobrovolskaia MA, Aggarwal P, Hall JB, McNeil SE (2008) Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol Pharm 5(4):487–495CrossRefGoogle Scholar
  37. 37.
    Prina-Mello A, Samuel S, Medina C, Jain N, Radomski M, Volkov Y, Santos-Martinez M (2015) CdTe quantum dots induce activation of human platelets: implications for nanoparticle Hemocompatibility. Int J Nanomedicine 10:2723CrossRefGoogle Scholar
  38. 38.
    Wang J, Cao Y, Li Q, Liu L, Dong M (2015) Size effect of graphene oxide on modulating amyloid peptide assembly. Chem A Eur J 21(27):9632–9637CrossRefGoogle Scholar
  39. 39.
    Yi P, Chen KL (2013) Interaction of multiwalled carbon nanotubes with supported lipid bilayers and vesicles as model biological membranes. Environ Sci Technol 47(11):5711–5719CrossRefGoogle Scholar
  40. 40.
    Richter RP, Lai Kee Him J, Tessier B, Tessier C, Brisson AR (2005) On the kinetics of adsorption and two-dimensional self-assembly of Annexin A5 on supported lipid bilayers. Biophys J 89(5):3372–3385CrossRefGoogle Scholar
  41. 41.
    Frost R, Svedhem S, Langhammer C, Kasemo B (2016) Graphene oxide and lipid membranes: size-dependent interactions. Langmuir 32(11):2708–2717CrossRefGoogle Scholar
  42. 42.
    Westas E, Svanborg LM, Wallin P, Bauer B, Ericson MB, Wennerberg A, Mustafa K, Andersson M (2015) Using QCM-D to study the adhesion of human gingival fibroblasts on implant surfaces. J Biomed Mater Res Part A 103(10):3139–3147CrossRefGoogle Scholar
  43. 43.
    Maurer-Jones MA, Gunsolus IL, Meyer BM, Christenson CJ, Haynes CL (2013) Impact of TiO 2 nanoparticles on growth, biofilm formation, and Flavin secretion in Shewanella Oneidensis. Anal Chem 85(12):5810–5818CrossRefGoogle Scholar
  44. 44.
    Afrooz ARMN, Sivalapalan ST, Murphy CJ, Hussain SM, Schlager JJ, Saleh NB (2013) Spheres vs. rods: the shape of gold nanoparticles influences aggregation and deposition behavior. Chemosphere 91(1):93–98CrossRefGoogle Scholar
  45. 45.
    Quevedo IR, Olsson ALJ, Tufenkji N (2013) Deposition kinetics of quantum dots and polystyrene latex nanoparticles onto alumina: role of water chemistry and particle coating. Environ Sci Technol 47(5):2212–2220CrossRefGoogle Scholar
  46. 46.
    Tong M, Ding J, Shen Y, Zhu P (2010) Influence of biofilm on the transport of fullerene (C60) nanoparticles in porous media. Water Res 44(4):1094–1103CrossRefGoogle Scholar
  47. 47.
    McNew CP, LeBoeuf EJ (2015) The role of attached phase soil and sediment organic matter physicochemical properties on fullerene (nC60) attachment. Chemosphere 139:609–616CrossRefGoogle Scholar
  48. 48.
    McNew CP, LeBoeuf EJ (2016) nC60 deposition kinetics: the complex contribution of humic acid, ion concentration, and valence. J Colloid Interface Sci 473:132–140CrossRefGoogle Scholar
  49. 49.
    Yi P, Chen KL (2013) Influence of solution chemistry on the release of multiwalled carbon nanotubes from silica surfaces. Environ Sci Technol 47(21):12211–12218CrossRefGoogle Scholar
  50. 50.
    Chowdhury I, Duch MC, Mansukhani ND, Hersam MC, Bouchard D (2014) Deposition and release of graphene oxide nanomaterials using a quartz crystal microbalance. Environ Sci Technol 48(2):961–969CrossRefGoogle Scholar
  51. 51.
    Chang X, Bouchard DC (2013) Multiwalled carbon nanotube deposition on model environmental surfaces. Environ Sci Technol 47(18):10372–10380CrossRefGoogle Scholar
  52. 52.
    Chen KL, Elimelech M (2008) Interaction of fullerene (C 60 ) nanoparticles with humic acid and alginate coated silica surfaces: measurements, mechanisms, and environmental implications. Environ Sci Technol 42(20):7607–7614CrossRefGoogle Scholar
  53. 53.
    Chowdhury I, Duch MC, Mansukhani ND, Hersam MC, Bouchard D (2014) Interactions of graphene oxide nanomaterials with natural organic matter and metal oxide surfaces. Environ Sci Technol 48(16):9382–9390CrossRefGoogle Scholar
  54. 54.
    Chowdhury I, Hou W-C, Goodwin D, Henderson M, Zepp RG, Bouchard D (2015) Sunlight affects aggregation and deposition of graphene oxide in the aquatic environment. Water Res 78:37–46CrossRefGoogle Scholar
  55. 55.
    Cheng Y, Yin L, Lin S, Wiesner M, Bernhardt E, Liu J (2011) Toxicity reduction of polymer-stabilized silver nanoparticles by sunlight. J Phys Chem C 115(11):4425–4432CrossRefGoogle Scholar
  56. 56.
    Hou W-C, Chowdhury I, Goodwin DG, Henderson WM, Fairbrother DH, Bouchard D, Zepp RG (2015) Photochemical transformation of graphene oxide in sunlight. Environ Sci Technol 49(6):3435–3443CrossRefGoogle Scholar
  57. 57.
    Cuenya BR (2010) Synthesis and catalytic properties of metal nanoparticles: size, shape, support, composition, and oxidation state effects. Thin Solid Films 518(12):3127–3150CrossRefGoogle Scholar
  58. 58.
    Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959CrossRefGoogle Scholar
  59. 59.
    Lu L, Li L, Wang X, Li G (2005) Understanding of the finite size effects on lattice vibrations and electronic transitions of. J Phys Chem B 109:17151–17156CrossRefGoogle Scholar
  60. 60.
    Woldu T, Raneesh B, Reddy MVR, Kalarikkal N (2016) Grain size dependent Magnetoelectric coupling of BaTiO 3 nanoparticles. RSC Adv 6(10):7886–7892CrossRefGoogle Scholar
  61. 61.
    Abbas Z, Labbez C, Nordholm S, Ahlberg E (2008) Size-dependent surface charging of nanoparticles. J Phys Chem C 112(15):5715–5723CrossRefGoogle Scholar
  62. 62.
    Holmberg JP, Ahlberg E, Bergenholtz J, Hassellöv M, Abbas Z (2013) Surface charge and interfacial potential of titanium dioxide nanoparticles: experimental and theoretical investigations. J Colloid Interface Sci 407:168–176CrossRefGoogle Scholar
  63. 63.
    Barisik M, Atalay S, Beskok A, Qian S (2014) Size dependent surface charge properties of silica nanoparticles. J Phys Chem C 118(4):1836–1842CrossRefGoogle Scholar
  64. 64.
    Seo J, Kim JH, Lee M, Moon J, Yi DK, Paik U (2016) Size-dependent interactions of silica nanoparticles with a flat silica surface. J Colloid Interface Sci 483:177–184CrossRefGoogle Scholar
  65. 65.
    Tang Z, Palafox-Hernandez JP, Law W-C, Hughes ZE, Swihart MT, Prasad PN, Knecht MR, Walsh TR (2013) Biomolecular recognition principles for Bionanocombinatorics: an integrated approach to elucidate Enthalpic and entropic factors. ACS Nano 7(11):9632–9646CrossRefGoogle Scholar
  66. 66.
    Lee C-L, Tsai Y-L, Chen C-W (2013) Specific and mass activity of silver Nanocube and nanoparticle-based catalysts for electroless copper deposition. Electrochim Acta 104:185–190CrossRefGoogle Scholar
  67. 67.
    Liu Y, Rosenfield E, Hu M, Mi B (2013) Direct observation of bacterial deposition on and detachment from nanocomposite membranes embedded with silver nanoparticles. Water Res 47(9):2949–2958CrossRefGoogle Scholar
  68. 68.
    Swetha P, Devi KSS, Kumar AS (2014) In-situ trapping and confining of highly redox active quinoline quinones on MWCNT modified glassy carbon electrode and its selective electrocatalytic oxidation and sensing of hydrazine. Electrochim Acta 147:62–72CrossRefGoogle Scholar
  69. 69.
    Booth A, Pintre IC, Lin Y, Gough JE, Webb SJ (2015) Release of proteins and enzymes from vesicular compartments by alternating magnetic fields. Phys Chem Chem Phys 17(24):15579–15588CrossRefGoogle Scholar
  70. 70.
    Kasputis T, Koenig M, Schmidt D, Sekora D, Rodenhausen KB, Eichhorn K-J, Uhlmann P, Schubert E, Pannier AK, Schubert M, Stamm M (2013) Slanted columnar thin films prepared by glancing angle deposition functionalized with Polyacrylic acid polymer brushes. J Phys Chem C 117(27):13971–13980CrossRefGoogle Scholar
  71. 71.
    Rayaprolu V, Manning BM, Douglas T, Bothner B (2010) Virus particles as active nanomaterials that can rapidly change their viscoelastic properties in response to dilute solutions. Soft Matter 6(21):5286–5288CrossRefGoogle Scholar
  72. 72.
    Mansfield E, Tyner KM, Poling CM, Blacklock JL (2014) Determination of nanoparticle surface coatings and nanoparticle purity using microscale thermogravimetric analysis. Anal Chem 86(3):1478–1484CrossRefGoogle Scholar
  73. 73.
    Mansfield E, Kar A, Quinn TP, Hooker SA (2010) Quartz crystal microbalances for microscale thermogravimetric analysis. Anal Chem 82(24):9977–9982CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of advanced research and developmentPolyus Research Institute of M.F.StelmakhMoscowRussia
  2. 2.Sector for high-temperature and sensor materialsKurnakov Institute of General and Inorganic Chemistry, The Russian Academy of SciencesMoscowRussia
  3. 3.The Institute of ChemistryThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations