Advertisement

Impedanzsensorik für Batteriezellen in Elektro-Fahrzeugen

  • Jan Philipp Schmidt
  • Thomas Hammerschmidt

Zusammenfassung

Die Zellimpedanz stellt als charakteristische Batteriegröße ein wichtiger Performance-Indikator dar. Darüber hinaus lässt sie sich jedoch durch Ihre starke Abhängigkeit von Betriebsbedingungen und Alterungszustand auch zur Diagnose verwenden. Ausgehend von den Sensitivitäten der Impedanz werden die möglichen Anwendungsszenarien aufgezeigt. Dabei wird speziell auf die Temperatursensitivität stärker eingegangen. Von dieser ausgehend werden schließlich Anforderungen an einen Impedanzsensor zur Bestimmung der Zellkerntemperatur abgeleitet und diskutiert.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    D. A. Howey, et al., „Online Measurement of Battery Impedance Using Motor Controller Excitation“, IEEE transactions on vehicular technology, pp. 2557-2566, 2014.Google Scholar
  2. [2]
    N. Sassano, et al., „Batterie-Zellensensoren mit drahtloser Kommunikation und verteilter Signalverarbeitung“, in Thomas Tille (Hrsg.) Automobil-Sensorik Ausgewählte Sensorprinzipien und deren automobile Anwendung, Springer, 2016, pp. Kapitel 2, Seite 45-63.CrossRefGoogle Scholar
  3. [3]
    A. Lasia, “Electrochemical Impedance Spectroscopy and its Applications”, Springer, 2014.CrossRefGoogle Scholar
  4. [4]
    M. E. Orazem und B. Tribollet, “Electrochemical Impedance Spectroscopy”, John Wiley & Sons, 2011.Google Scholar
  5. [5]
    P. Hong, et al, „Modeling and Experiment Validation of the DC/DC Converter for Online AC Impedance Identification of the Lithium-Ion Battery“, SAE Int. J. Alt. Power., pp. 233-245, 2017.Google Scholar
  6. [6]
    J. Illig, et al., „Understanding the impedance spectrum of 18650 LiFePO4-cells“, J. Power Sources, pp. 670-679, 2013.Google Scholar
  7. [7]
    J. Landesfeind, et al., „An Analysis Protocol for Three-Electrode Li-Ion Battery Impedance Spectra: Part I. Analysis of a High-Voltage Positive Electrode“, J. Electrochem. Soc., pp. A1773-A1783, 2017.Google Scholar
  8. [8]
    J. P. Schmidt, et al., „Measurement of the internal cell temperature via impedance: Evaluation and application of a new method“, J. Power Sources, pp. 110-117, 2013.Google Scholar
  9. [9]
    N. Damay, et al., „Thermal modeling of large prismatic LiFePO4/graphite battery. Coupled thermal and heat generation models for characterization and simulation“, J. Power Sources, pp. 37-45, 2015.Google Scholar
  10. [10]
    G.-H. Kim, et al., „A three-dimensional thermal abuse model for lithium-ion cells“, J. Power Sources, pp. 476-489, 2007.Google Scholar
  11. [11]
    M. P. Felder et al., „ State of charge classification for lithium-ion batteries using impedance based features“, Adv. Radio Sci., pp. 93-97, 2017.Google Scholar
  12. [12]
    P. Jansen, et al., „Impedance spectra classification for determining the state of charge on a lithium iron phosphate cell using a support vector machine“, Adv. Radio Sci., pp. 127-132, 2015.CrossRefGoogle Scholar
  13. [13]
    B. Stiaszny, et al., „Electrochemical characterization and post-mortem analysis of aged LiMn2O4–Li(Ni0.5Mn0.3Co0.2)O2/graphite lithium ion batteries. Part I: Cycle aging“, J. Power Sources, pp. 439-450, 2014.Google Scholar
  14. [14]
    R. Hausbrand, et al., „Fundamental degradation mechanisms of layered oxide Li-ion battery cath-ode materials: Methodology, insights and novel approaches“, Mater. Sci. Eng. B, pp. 3-25, 2015.Google Scholar
  15. [15]
    M. Doyle, et al., „Modeling of Galvanostatic Charge and Discharge of the Lithi-um/Polymer/Insertion Cell“, J. Electrochem. Soc., pp. 1526-1533, 1993.CrossRefGoogle Scholar
  16. [16]
    R. Srinivasan, et al., „Instantaneous measurement of the internal temperature in lithium-ion rechargeable cells“, Electrochim. Acta, pp. 6189-6204, 2011.Google Scholar
  17. [17]
    N. S. Spinner, et al., „Expanding the Operational Limits of the Single-Point Impedance Diagnostic for Internal Temperature Monitoring of Lithium-ion Batteries“, Electrochim. Acta, pp. 488-493, 2015.Google Scholar
  18. [18]
    R. R. Richardson, et al., „Battery internal temperature estimation by combined impedance and surface temperature measurement“, J. Power Sources, pp. 254-261, 2014.CrossRefGoogle Scholar
  19. [19]
    L.H.J. Raijmakers, et al., „Sensorless battery temperature measurements based on electrochemical impedance spectroscopy“, J. Power Sources, pp. 539-544, 2014.CrossRefGoogle Scholar
  20. [20]
    J. Zhu, et al., „A new lithium-ion battery internal temperature on-line estimate method based on electrochemical impedance spectroscopy measurement“, J. Power Sources, pp. 990-1004, 2015.Google Scholar
  21. [21]
    I. O. f. Standardisation, Guide to the Expression of Uncertainty in Measurements, Genf, Schweiz: DIN/Beuth-Verlag, 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2018

Authors and Affiliations

  • Jan Philipp Schmidt
    • 1
  • Thomas Hammerschmidt
    • 1
  1. 1.BMW AGMunichDeutschland

Personalised recommendations