Advertisement

Porösizierte Glaskeramik-Substrate für die Radarsensorik

  • Armin Talai
  • Alexander Kölpin
  • Achim Bittner
  • Frank Steinhäußer
  • Ulrich Schmid

Zusammenfassung

Für Komfortfunktionen und aktive Sicherheitsfunktionen werden in modernen Fahrzeugen Radarsensoren im freigegebenen Frequenzband zwischen 77 GHz und 79 GHz benötigt. Um einen langzeitstabilen Betrieb bei gleichzeitig geringer Baugröße der Radarsensoren zu gewährleisten, müssen robuste Materialsysteme mit geeigneten dielektrischen Eigenschaften im Bereich der Aufbau- und Verbindungstechnik verwendet werden. Kommerzielle LTCC (engl.: low temperature cofired ceramics) Glaskeramiksubstrate ermöglichen einen dreidimensionalen Aufbau bei hervorragenden Hochfrequenzeigenschaften. Um die Antennencharakteristik zu optimieren, wird ein Porösizier-Verfahren vorgestellt, um eine lokal reduzierte Permittivität zu erreichen. Dabei wird nasschemisch das Glaskeramikmaterial porösiziert, um oberflächennah eine Schicht mit reduzierter dielektrischer Konstante zu erzielen. Diese wird durch den Vergleich von Hochfrequenzmessungen mit numerischen Simulationsergebnissen bestimmt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    CEPT Report 36, Report from CEPT to the European Commission in response to Part 1 of the Mandate on Automotive Short Range Radar systems (SRR), Electronic Communications Committee (ECC) within the European Conference on Postal and Telecommunications Administrations (CEPT), 25th June 2010.Google Scholar
  2. [2]
    M. O’Brien, A. Kashi, A. Kashi, ADAS and the systems engineering challenge, advanced driver assistance systems, 2016.Google Scholar
  3. [3]
    Körber, R., Ziegler, V., Schmid, U., Imaging Millimeter Wave Radar with Phases Array Antenna, in Proc. 12th Advanced Microsystems for Automotive Applications Conference, Springer Verlag, Berlin, pp. 167–180, 2008.Google Scholar
  4. [4]
    Schuler, K., Venot, Y., Wiesbeck, W., Innovative Material Modulation for Multilayer LTCC Antenna Design at 76.5 GHz Radar and Communication Application, in Proc. 33rd European Microwave Conference, Munich, pp. 707-710, 2003.Google Scholar
  5. [5]
    Lee, Y.C., Park, C.S., Loss Minimization of LTCC Microstrip Structure with Air-Cavities Embedment in the Dielectric, Int. J. Electron. Commun., 57, Iss. 6, pp. 429-432, 2003.CrossRefGoogle Scholar
  6. [6]
    Gongora-Rubio, M.R., Espinoza-Vallejos, P. Sola-Laguna, L. and Santiago-Avilés, J.J., Overview of low temperature co-fired ceramics tape technology for meso-system technology (MsST), Sensors and Actuators A, 89, pp. 222-241, 2001.CrossRefGoogle Scholar
  7. [7]
    Wagner, M., Roosen, A., Low Temperature Co-fired Ceramics (LTCC)-Mehrlagenkeramik für mikroelektronische Anwendungen, DKG Handbuch Technische Keramische Werkstoffe, 70. Erg.-Lfg., 1-24, 2002.Google Scholar
  8. [8]
    Bittner, A.; Schmid, U.: The porosification of fired LTCC substrates by applying a wet chemical etching procedure. J. Europ. Ceram. Soc. 29(1), 99–104, 2009.CrossRefGoogle Scholar
  9. [9]
    Eberstein, M.; Rabe, T.; Schiller, W. A.: Influences of the Glass Phase on Densification, Microstructure, and Properties of Low-Temperature Co-Fired Ceramics. Intern. J. Applied Ceramic Technology 3, Nr. 6, S. 428–436, 2006.CrossRefGoogle Scholar
  10. [10]
    Steinhäußer, F., Hradil, K., Schwarz, S., Artner, W., Stöger-Pollach, M., Steiger-Thirsfeld, A., Bittner, A., Schmid, U., Wet chemical porosification of LTCC in phosphoric acid: Anorthite forming tapes, Journal of the European Ceramic Society, Vol. 35, No. 15, 4181-4188, 2015.CrossRefGoogle Scholar
  11. [11]
    Steinhäußer, F., Talai, A., Weigel, R., Koelpin, A., Bittner, A., Schmid, U. Permittivity reduction and surface modification by porosification of LTCC. Ceramics International, Vol. 42, No. 7, 8925-8931, 2016.CrossRefGoogle Scholar
  12. [12]
    Bengisu, M.: Engineering Ceramics. Berlin [u.a.]: Springer-Verlag, 2001.CrossRefGoogle Scholar
  13. [13]
    Scholze, H.: Glass - Nature, Structure, and Properties. New York [u.a.]: Springer-Verlag GmbH, 1991Google Scholar
  14. [14]
    Steinhäußer, F., Talai, A., Göltl, G., Steiger-Thirsfeld, A., Bittner, A., Weigel, R., Schmid, U. Concentration and temperature dependent selectivity of the LTCC porosification process with phosphoric acid. Ceramics International, Vol. 43, No. 1, 714-721, 2017.CrossRefGoogle Scholar
  15. [15]
    Holleman, A. F.; Wiberg, E. ; Wiberg, N.: Lehrbuch der Anorganischen Chemie. 102. Auflage, Berlin: Walter de Gruyter, 2007.Google Scholar
  16. [16]
    Talai, A.; Steinhäußer, F.; Gmeiner, B., Wegener, M.; Bittner, A.; Schmid, U., Roosen, A., Koelpin, A., Weigel, R.: Electromagnetic Analysis of Conductor Track Surface Roughnesses from 1 GHz to 110 GHz. In: International Conference on Electromagnetics in Advanced Applications (ICEAA), S. 415-418, 2014.Google Scholar
  17. [17]
    Talai, A., Weigel, R., Koelpin, A., Steinhäußer, F., Bittner, A., Schmid, U., The Influence by Trapezoidal Conductor Shapes on Ring-Resonator based Material Characterization up to 110 GHz. In: IEEE International Conference on Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications, pp. 1-4, 2014.Google Scholar
  18. [18]
    Steinhäußer, F., Sandulache, G., Hansal, W., Bittner, A., Schmid, U., Silver Metallization on Porosified LTCC Deposited by Pulse Plating Technique. In: Ceramic Interconnect and Ceramic Microsystems Technologies (CICMT) conference 2015 - IMAPS Europe, 2015.CrossRefGoogle Scholar
  19. 19]
    Steinhäußer, F., Talai, A., Steiger-Thirsfeld, A., Koelpin, A., Weigel, R., Bittner, A., Schmid, U., Graphical based characterisation and modelling of material gradients in porosified LTCC. Journal of the European Ceramic Society, Vol. 34, No. 11, pp. 2833 – 2838, 2014.CrossRefGoogle Scholar
  20. [20]
    Richtmyer, R. D., Dielectric Resonators, Journal of Applied Physics, Vol. 10, No. 6, pp. 391-398, 1939.CrossRefGoogle Scholar
  21. [21]
    Talai, A., Steinhäußer, F., Bittner, A., Schmid, U., Weigel, R., Koelpin, A., A Finite 3D Field Simulation Method for Permittivity Gradient Implementation of a Novel Porosification Process in LTCC, Microwave Symposium Digest (IMS), 2013 IEEE MTTS International, ISBN: 978-1-4673-6177-4, USA, Seattle, June 2013.Google Scholar
  22. [22]
    Talai, A., Gmeiner, B., Steinhäußer, F., Bittner, A., Ruede, U., Schmid, U., Weigel, R., Koelpin, A., Electromagnetic Field Analysis with Advanced Structural Modeling of Microstrips on Porosified LTCC, IEEE/MTT-S, Proceedings of the European Microwave Conference (EuMC), pp. 440-443, Nuremberg, Germany, Oct. 2013.Google Scholar
  23. [23]
    Talai, A., Steinhäußer, F., Gmeiner, B., Bittner, A., Ruede, U., Schmid, U., Weigel, R., Koelpin, A., Electromagnetic Analysis of Fringed Microstrip Lines on Porosified LTCC, IEEE/URSI, International Conference on Electromagnetics in Advanced Applications (ICEAA), ISBN: 978-1-4673-5705-0, pp. 1189-1192, Torino, Italy, Sep. 2013.Google Scholar
  24. [24]
    Talai, A., Steinhäußer, F., Bittner, A., Schmid, U., Weigel, R., Koelpin, A., The Influence by Trapezoidal Conductor Shapes on Ring-Resonator based Material Characterization up to 110 GHz, IEEE International Conference on Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO), pp. 1-4, Pavia, Italy, May 2014.Google Scholar
  25. [25]
    Talai, A., Steinhäußer, F., Bittner, A., Schmid, U., Weigel, R., Koelpin, A., A Simplified Equivalent Model for Microwave Characteristics of Porosified LTCC, XXXIth URSI General Assembly and Scientific Symposium (URSI GASS), pp. 1-4, Beijing, China, Aug. 2014.Google Scholar
  26. [26]
    CST – Computer Simulation Technology GmbH, „Microwave Studio Suite 2018“, https://www.cst.com/products/cstmws.
  27. [27]
    Talai, A., Steinhäußer, F., Bittner, A., Schmid, U., Weigel, R., Koelpin, A., A Permittivity Characterization Method by Detuned Ring-Resonators for Bulk Materials up to 110 GHz, IEEE/MTT-S Proceedings of the 44th European Microwave Conference (EuMC), pp. 124-127, Rome, Italy, Oct. 2014.Google Scholar
  28. [28]
    Talai, A., Steinhäußer, F., Bittner, A., Schmid, U., Weigel, R., Koelpin, A., A Method for the Determination of the Complex Permittivity by Detuned Ring Resonators for Bulk Materials up to 110 GHz, International Journal of Microwave and Wireless Technologies, Cambridge University Press, ISSN: 17590787, pp. 251-260, 2015.CrossRefGoogle Scholar
  29. [29]
    W.C. Heraeus GmbH Thick Film Materials, „LTCC Materials, CT 702“, Datasheet, http://heraeus-thickfilm.com/.
  30. [30]
    W.C. Heraeus GmbH Thick Film Materials, „LTCC Materials, CT 701“, Datasheet, http://heraeus-thickfilm.com/.
  31. [31]
    DuPont Microcircuit Materials, „951 Green Tape™, Thick Film Composition“, Datasheet, http://www.dupont.com.
  32. [32]
    Talai, A., Steinhäußer, F., Bittner, A., Rittweg, T., Schwanke, D., Schmid, U., Weigel, R., Koelpin, A., Embedded Cavity based Dielectric Loss Measurements for LTCC Substrates up to 110 GHz, IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), pp. 1-4, Ottawa, Canada, Aug. 2015.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2018

Authors and Affiliations

  • Armin Talai
    • 1
  • Alexander Kölpin
    • 2
  • Achim Bittner
    • 3
  • Frank Steinhäußer
    • 4
  • Ulrich Schmid
    • 4
  1. 1.Delphi Deutschland GmbHWuppertalDeutschland
  2. 2.Brandenburgische Technische Universität Cottbus-SenftenbergCottbusDeutschland
  3. 3.Hahn-Schickard Gesellschaft für angewandte Forschung e.V.Villingen-SchwenningenDeutschland
  4. 4.Institut für Sensor und AktuatorsystemeTechnische Universität WienWienAustria

Personalised recommendations