Zusammenfassung
Als integraler Bestandteil von automatisiert und selbstfahrenden Autos kann ein LiDAR-Sensorsystem zur Abstands- und Geschwindigkeitsmessung sowie zur Klassifizierung von Objekten im Straßenverkehr eingesetzt werden. Neben den optischen Sensoren kommt den elektronischen Schaltungskomponenten eine besondere Bedeutung zu. Sie müssen die Anforderungen der funktionalen Sicherheit nach ASIL Level-B/D (ISO 26262) erfüllen und definieren die Präzision der Messtechnik sowie den Kostenrahmen.
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
Literatur
Goldstein, B. S., Dalrymple, G. F., “Galium Arsenid Injection Laser Radar”, Proceedings of the IEEE, Vol. 55, No.2, February, 1967.
Kolawole, M., “Radar Systems, Peak Detection and Tracking”, Newnes (Elsevier Science), 2002.
Kurti, S., Kostamovaara, J., “An Integrated Laser Radar Receiver Channel Utilizing a Time-Domain Walk Error Compensation Scheme”, IEEE Transactions on Instrumentation and Measurement, Vol. 60, No. 1, January 2011.
ISO 26262: „Automotive Functional Safety“, http://www.iso.org
Kasturi, A., Milanovic, V., Atwood, B., Yang, J., “UAV-Borne LiDAR with MEMS Mirror Based Scanning Capability”, SPIE Defense and Commercial Sensing Conference, April 20th, 2016.
Sze, S.M., Kwok, K. “Physics of Semiconductor Devices”, Jon Wiley & Sons, Inc., 2007.
Winter, H., “Kamerabasierte Sensorik für Fahrerassistenzsysteme”, 3rd Leibniz Conference of Advanced Science - Sensorsystems, 2006.
Hänsler, E., „Statistische Signale. Grundlagen und Anwendungen“ Springer Verlag, 2010.
picco Technology, „Einführung Sampling-Oszilloskope“, PSE-PRIGGEN Special Electronic, 2010.
Texas Instruments, “LiDAR Pulsed Time-of-Flight Reference Design using High-Speed Data Converters”, TIDUC73B–November 2016–Revised August 2017.
Leser, R.J., Salzman, J.A. “Ligth-Detecetion Electronics for Rama LiDAR”, Lewis Reasearch Center Cleveland, National Aeronautics and Space Administration, 1972.
McCormack, P., Kwok, K. “Industrial RADAR/LiDAR System”, ECE, National Semiconductor, 2005.
Kawahara, K., Ikeda H., Mizuno, M., “Development of Pulse Detection IC for Space LiDAR”, Jon Wiley & Sons, Inc. Trans. JSASS Aerospace Tech. Japan, Vol. 8, No. ists27, pp. Td_17-Td_22, 2010.
Ito, K., et al., “System Design and Performance Characterization of a MEMS-Based Laser”, IEEE Photonics Journal, Volume 5, Number 2, 2013.
ORTEC AN-52, “Pico-Second Timing Analyzer Application”, Advanced Measurement Technology, Inc., 2007.
Jansson, J., Koskinen, V., Mäntyniemi, A., Kostamovaara, J., “A Multi-Channel High Precision CMOS Time-to-Digital Converter for Laser Scanner Based Perception Systems”, Academy of Finnland, 2011.
Xu, Z., Miyahara, M. Matsuzawa, A., “Picoseconds Resolution Time-to-Digital Converter Using GM_C Integrator and SAR-ADC”, IEEE Transactions on Nuclera Science, Vol. 61, No.2, April 2014.
Henzler, S., “Time-to-Digital Converters”, Springer Series in Advanced Microelectronics 29, Springer Science+Business Media B.V., 2010.
Katsibas, T., et al., “Real-Time Signal Acquisition, High Speed Processing and Frequency Analysis in Modern Air Data Measurement Instruments”, Recent Advances in Signal Processing, ISBN 978-953-307-002-5, 2009.
Kalden, P., Sterna, E. “Development of a Low-Cost Laser Rangefinder (LiDAR)”, Master Thesis in Systems, Control and Mechatronics, Chalmers University of Technology, Gothenburg, Sweden, 2015.
Mimeault, Y., Leddartech Inc., Quebec (CA), “Detection and Ranging Methods and Systems”, Patent No. US 8,310,655 B2, Nov. 13, 2012.
Kolawole, M., “Radar Systems, Peak detection and Tracking”, Elsevier Science, ISBN 0 7506 57731, 2002.
Gitelink, J., et al., “Development of Advanced Driver Assistance Systems with Vehicle Hardware-in-the-Loop Simulations”, Vehicle System Dynamics, Vol. 44, No. 7, pp. 569-590, July 2006.
Gagnon, Frederic, “Solid-State LiDAR: Enabling High-Volume Optical Sensor Deployments in its Applications”, Presentation, Joint Symposium on Managed Lanes & AET, Dallas, TC, July 16-18, 2017.
Lawrenz, W., Obermöller, N. “CAN: Controller Area Network: Grundlagen, Design Anwendungen, Testtechnik”, VDE Verlag, May 31, 2011.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Kernhof, J., Leuckfeld, J., Tavano, G. (2018). LiDAR-Sensorsystem für automatisiertes und autonomes Fahren. In: Tille, T. (eds) Automobil-Sensorik 2. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56310-6_2
Download citation
DOI: https://doi.org/10.1007/978-3-662-56310-6_2
Publisher Name: Springer Vieweg, Berlin, Heidelberg
Print ISBN: 978-3-662-56309-0
Online ISBN: 978-3-662-56310-6
eBook Packages: Computer Science and Engineering (German Language)