Advertisement

LiDAR-Sensorsystem für automatisiertes und autonomes Fahren

  • Jürgen Kernhof
  • Jan Leuckfeld
  • Guiseppe Tavano

Zusammenfassung

Als integraler Bestandteil von automatisiert und selbstfahrenden Autos kann ein LiDAR-Sensorsystem zur Abstands- und Geschwindigkeitsmessung sowie zur Klassifizierung von Objekten im Straßenverkehr eingesetzt werden. Neben den optischen Sensoren kommt den elektronischen Schaltungskomponenten eine besondere Bedeutung zu. Sie müssen die Anforderungen der funktionalen Sicherheit nach ASIL Level-B/D (ISO 26262) erfüllen und definieren die Präzision der Messtechnik sowie den Kostenrahmen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Goldstein, B. S., Dalrymple, G. F., “Galium Arsenid Injection Laser Radar”, Proceedings of the IEEE, Vol. 55, No.2, February, 1967.CrossRefGoogle Scholar
  2. [2]
    Kolawole, M., “Radar Systems, Peak Detection and Tracking”, Newnes (Elsevier Science), 2002.CrossRefGoogle Scholar
  3. [3]
    Kurti, S., Kostamovaara, J., “An Integrated Laser Radar Receiver Channel Utilizing a Time-Domain Walk Error Compensation Scheme”, IEEE Transactions on Instrumentation and Measurement, Vol. 60, No. 1, January 2011.Google Scholar
  4. [4]
    ISO 26262: „Automotive Functional Safety“, http://www.iso.org
  5. [5]
    Kasturi, A., Milanovic, V., Atwood, B., Yang, J., “UAV-Borne LiDAR with MEMS Mirror Based Scanning Capability”, SPIE Defense and Commercial Sensing Conference, April 20th, 2016.Google Scholar
  6. [6]
    Sze, S.M., Kwok, K. “Physics of Semiconductor Devices”, Jon Wiley & Sons, Inc., 2007.Google Scholar
  7. [7]
    Winter, H., “Kamerabasierte Sensorik für Fahrerassistenzsysteme”, 3rd Leibniz Conference of Advanced Science - Sensorsystems, 2006.Google Scholar
  8. [8]
    Hänsler, E., „Statistische Signale. Grundlagen und Anwendungen“ Springer Verlag, 2010.Google Scholar
  9. [9]
    picco Technology, „Einführung Sampling-Oszilloskope“, PSE-PRIGGEN Special Electronic, 2010.Google Scholar
  10. [10]
    Texas Instruments, “LiDAR Pulsed Time-of-Flight Reference Design using High-Speed Data Converters”, TIDUC73B–November 2016–Revised August 2017.Google Scholar
  11. [11]
    Leser, R.J., Salzman, J.A. “Ligth-Detecetion Electronics for Rama LiDAR”, Lewis Reasearch Center Cleveland, National Aeronautics and Space Administration, 1972.Google Scholar
  12. [12]
    McCormack, P., Kwok, K. “Industrial RADAR/LiDAR System”, ECE, National Semiconductor, 2005.Google Scholar
  13. [13]
    Kawahara, K., Ikeda H., Mizuno, M., “Development of Pulse Detection IC for Space LiDAR”, Jon Wiley & Sons, Inc. Trans. JSASS Aerospace Tech. Japan, Vol. 8, No. ists27, pp. Td_17-Td_22, 2010.CrossRefGoogle Scholar
  14. [14]
    Ito, K., et al., “System Design and Performance Characterization of a MEMS-Based Laser”, IEEE Photonics Journal, Volume 5, Number 2, 2013.CrossRefGoogle Scholar
  15. [15]
    ORTEC AN-52, “Pico-Second Timing Analyzer Application”, Advanced Measurement Technology, Inc., 2007.Google Scholar
  16. [16]
    Jansson, J., Koskinen, V., Mäntyniemi, A., Kostamovaara, J., “A Multi-Channel High Precision CMOS Time-to-Digital Converter for Laser Scanner Based Perception Systems”, Academy of Finnland, 2011.Google Scholar
  17. [17]
    Xu, Z., Miyahara, M. Matsuzawa, A., “Picoseconds Resolution Time-to-Digital Converter Using GM_C Integrator and SAR-ADC”, IEEE Transactions on Nuclera Science, Vol. 61, No.2, April 2014.Google Scholar
  18. [18]
    Henzler, S., “Time-to-Digital Converters”, Springer Series in Advanced Microelectronics 29, Springer Science+Business Media B.V., 2010.CrossRefGoogle Scholar
  19. [19]
    Katsibas, T., et al., “Real-Time Signal Acquisition, High Speed Processing and Frequency Analysis in Modern Air Data Measurement Instruments”, Recent Advances in Signal Processing, ISBN 978-953-307-002-5, 2009.Google Scholar
  20. [20]
    Kalden, P., Sterna, E. “Development of a Low-Cost Laser Rangefinder (LiDAR)”, Master Thesis in Systems, Control and Mechatronics, Chalmers University of Technology, Gothenburg, Sweden, 2015.Google Scholar
  21. [21]
    Mimeault, Y., Leddartech Inc., Quebec (CA), “Detection and Ranging Methods and Systems”, Patent No. US 8,310,655 B2, Nov. 13, 2012.Google Scholar
  22. [22]
    Kolawole, M., “Radar Systems, Peak detection and Tracking”, Elsevier Science, ISBN 0 7506 57731, 2002.Google Scholar
  23. [23]
    Gitelink, J., et al., “Development of Advanced Driver Assistance Systems with Vehicle Hardware-in-the-Loop Simulations”, Vehicle System Dynamics, Vol. 44, No. 7, pp. 569-590, July 2006.CrossRefGoogle Scholar
  24. [24]
    Gagnon, Frederic, “Solid-State LiDAR: Enabling High-Volume Optical Sensor Deployments in its Applications”, Presentation, Joint Symposium on Managed Lanes & AET, Dallas, TC, July 16-18, 2017.Google Scholar
  25. [25]
    Lawrenz, W., Obermöller, N. “CAN: Controller Area Network: Grundlagen, Design Anwendungen, Testtechnik”, VDE Verlag, May 31, 2011.Google Scholar
  26. [26]

Copyright information

© Springer-Verlag Berlin Heidelberg 2018

Authors and Affiliations

  • Jürgen Kernhof
    • 1
  • Jan Leuckfeld
    • 1
  • Guiseppe Tavano
    • 1
  1. 1.IDT Europe GmbHDresdenDeutschland

Personalised recommendations