Skip to main content

Development of Plant Communities in Time

  • Chapter
  • First Online:
Book cover Plant Ecology

Abstract

In this chapter we show that the development of plant communities in time must be known if we want to understand their actual floristic and structural composition. The first section describes the development of plants during earlier geological times, where temporal vegetation dynamics were largely influenced by tectonic and climatic events. In particular, the worldwide periodic fluctuations between cold and warm periods in the Pleistocene led to strong vegetation changes and resulted in spatial separations of different vegetation types. Today, intended or unintended human influences on vegetation are becoming increasingly important, leading to changes in vegetation structure, composition and the loss of plant species, as well as to a growing number of invasive species. We exemplify these aspects by discussing anthropogenic influences on vegetation in more detail for the Mediterranean, Saharan and tropical environments. In the following section, we present general aspects of temporal vegetation dynamics, including primary succession and secondary succession following more or less natural or human-made disturbances. Examples are given for mosaic cycles, cohort dynamics and the carousel model. We discuss different plant strategy models, which can be related to successional dynamics (r and K, CSR, resource-ratio, facilitation-tolerance-inhibition). The final section deals with aspects of ecological stability and the influence of disturbances, introducing the concepts of resistance, resilience, robustness, variability and persistence of plant communities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Austin MP (1985) Continuum concept, ordination methods and niche theory. Annu Rev Ecol Syst 16:39–61

    Article  Google Scholar 

  • Badal E, Bernabeu J, Vernet JL (1994) Vegetation changes and human action from the Neolithic to the Bronze Age (7000–4000 bp) in Alicante, Spain, based on charcoal analysis. Veg Hist Archaeobotany 3:155–166

    Article  Google Scholar 

  • Barnosky AD, Hadly EA, Bascompte J, Berlow EL, Brown JH, Fortelius M, Getz WM, Harte J, Hastings A, Marquet PA, Martinez ND, Mooers A, Roopnarine P, Vermeij G, Williams JW, Gillespie R, Kitzes J, Marshall C, Matzke N, Mindell DP, Revilla E, Smith AB (2012) Approaching a state shift in Earth’s biosphere. Nature 486:52–58

    CAS  PubMed  Google Scholar 

  • Bar-Yosef O (1998) The Natufian culture in the Levant, threshold to the origins of agriculture. Evol Anthropol 6:159–177

    Article  Google Scholar 

  • Bazzaz FA (1990) Plant-plant interactions in successional environment. In: Grace JB, Tilman D (eds) Perspectives on plant competition. Academic Press, San Diego

    Google Scholar 

  • Begon M, Harper JL, Townsend C (1999) Ecology, 3rd edn. Blackwell, Oxford

    Google Scholar 

  • Bick H (1993) Ökologie. Fischer, Stuttgart

    Google Scholar 

  • Böhmer HJ, Richter M (1996) Regeneration—Versuch einer Typisierung und zonalen Ordnung. Geogr Rundsch 48(11):626–632

    Google Scholar 

  • Brown VK (1985) Insect herbivores and plant succession. Oikos 44(1):17–22

    Article  Google Scholar 

  • Brown VK, Southwood TRE (1987) Secondary succession: patterns and strategies. In: Gray AJ, Crawley MJ, Edwards PJ (eds) Colonisation, succession and stability. Blackwell, Oxford

    Google Scholar 

  • Bruenig EF (1991) Functions of the tropical rainforest in the local and global context. Gießener Beitr Entwicklungsforsch Reihe 1(19):1–13

    Google Scholar 

  • Buhk C, Retzer V, Beierkuhnlein C, Jentsch A (2007) Predicting plant species richness and vegetation patterns in cultural landscapes using disturbance parameters. Agric Ecosyst Environ 122:446–457

    Article  Google Scholar 

  • Chiarucci A, Araujo MB, Decocq G, Beierkuhnlein C, Fernández-Palacios JM (2010) The concept of potential natural vegetation: an epitaph? J Veg Sci 21:1–7

    Article  Google Scholar 

  • Claussen M (2001) Biogeographical feedbacks and the dynamics of climate. In: Schulze ED (ed) Global biogeochemical cycles in the climate system. Academic Press, San Diego, pp 61–71

    Google Scholar 

  • Clements FE (1916) Plant succession: an analysis of the development of vegetation. Carnegie Inst., Washington.

    Google Scholar 

  • Connell JH, Slatyer RO (1977) Mechanisms of succession in natural communities and their role in community stability and organisation. Am Nat 111:1119–1144

    Article  Google Scholar 

  • Cornelius R (1991) Populationsbiologische Grundlagen des speziellen Artenschutzes. Verh Ges Ökol 20:905–916

    Google Scholar 

  • Deil U (1995) Vegetation und rezenter Landschaftswandel im Campo de Gibraltar (Südwestspanien) und im Tangerois (Nordwestmarokko). Geoökodynamik 16:109–136

    Google Scholar 

  • Deil U (1997) Zur geobotanischen Kennzeichnung von Kulturlandschaften—Vergleichende Untersuchungen in Südspanien und Nordmarokko. Erdwissenschaftliche Forschung 36, Wiesbaden Stuttgart

    Google Scholar 

  • Deil U, Müller-Hohenstein K (1984) Fragmenta Phytosociologica Arabiae-Felicis I: Eine Euphorbia balsamifera-Gesellschaft aus dem jemenitischen Hochland und ihre Beziehungen zu makaronesischen Pflanzengesellschaften. Flora 175:307–326

    Article  Google Scholar 

  • Deil U, Müller-Hohenstein K (1985) Beiträge zur Vegetation des Jemen. I. Pflanzengesellschaften und Ökotopgefüge der Gebirgstihamah am Beispiel des Beckens von At Tur (J.A.R.) Phytocoenologia 13:1–102

    Article  Google Scholar 

  • Dierschke H (1994) Pflanzensoziologie. Grundlagen und Methoden. Ulmer, Stuttgart

    Google Scholar 

  • Dislich C, Günther S, Homeier J, Schröder B, Huth A (2009) Simulating forest dynamics of a tropical mountain forest in South Ecuador. Erdkunde 63:347–364

    Article  Google Scholar 

  • Dotterweich M (2008) The history of soil erosion and fluvial deposits in small catchments of Central Europe: deciphering the long-term interaction between humans and the environment—a review. Geomorphology 101:192–208

    Article  Google Scholar 

  • Egler FE (1954) Vegetation science concepts I. Initial floristic composition, a factor in old-field vegetation development. Vegetatio 4:412–417

    Article  Google Scholar 

  • Ellenberg H (2009) Vegetation ecology of Central Europe, 4th edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Ellis CD, Goldewyik KK, Siebert S, Lightman D, Ramakutty N (2010) Anthropogenic transformation of the biomes, 1700 to 2000. Glob Ecol Biogeogr 19:589–606

    Google Scholar 

  • Elton CS (1958) The ecology of invasion by animals and plants. Methuen, London

    Book  Google Scholar 

  • Finckh M (1995) Die Wälder des Villarrica-Nationalparks (Südchile)—Lebensgemeinschaften als Grundlage für ein Schutzkonzept. Diss Bot 259:1–181

    Google Scholar 

  • Finegan B (1984) Forest succession. Nature 312:109–114

    Article  Google Scholar 

  • Firbas F (1949–1952) Waldgeschichte Mitteleuropas. 3 Bd. Fischer, Jena

    Google Scholar 

  • Gallimore R, Jakob R, Ktzbach J (2005) Coupled atmosphere-ocean-vegetation simulations for modern and mid-holocene climates: role of extratropical vegetation cover feedbacks. Clim Dyn 25:755–776

    Article  Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vörösmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153

    Article  CAS  Google Scholar 

  • Gigon A (1982) Typologie und Erfassung der ökologischen Stabilität und Instabilität mit Beispielen aus Gebirgsökosystemen. Verh Ges Ökol 12:13–30

    Google Scholar 

  • Gleason HA (1926) The individualistic concept of the plant association. Bull Torrey Bot Club 53:7–26

    Article  Google Scholar 

  • Goudie A (1994) Mensch und Umwelt. Spektrum, Heidelberg

    Google Scholar 

  • Grime JP (1974) Vegetation classification by reference to strategies. Nature 250:26–31

    Article  Google Scholar 

  • Grime JP, Hodgson JP, Hunt R (1988) Comparative plant ecology. Unwin, London

    Book  Google Scholar 

  • Grimm V, Schmidt E, Wissel C (1992) On the application of stability concepts in ecology. Ecol Model 63:143–161

    Article  Google Scholar 

  • Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG (2013) High-resolution global maps of 21st-century forest cover change. Science 342:850–853

    Article  CAS  PubMed  Google Scholar 

  • Harrison SP, Prentice IC (2003) Climate and CO2 controls on global vegetation distribution at the last glacial maximum analysis based on palaeovegetation data, biome modeling and palaeclimatic simulations. Glob Change Biol 9:983–1004

    Article  Google Scholar 

  • Hasel K, Schwartz E (2006) Forstgeschichte. Ein Grundriß für Studium und Praxis, 3rd edn. Kessel, Remagen

    Google Scholar 

  • Hellden U (1991) Desertification—time for an assessment? Ambio 20:372–383

    Google Scholar 

  • Hillmann GC, Hedges R, Moore A, Colledge S, Pettitt P (2001) New evidence for Lateglacial cereal cultivation at Abu Hureyra on the Euphrates. The Holocene 11:383–393

    Article  Google Scholar 

  • Holzhauser H, Magny M, Zumbühl JZ (2005) Glacier and lake-level variations in west-central Europe over the last 3500 years. The Holocene 15:789–801

    Article  Google Scholar 

  • Hooper DU, Adair EC, Bradley JC, Byrnes JEK, Hungate BA, Matulich KL, Gonzales A, Duffy JE, Gamfeldt L, O’Connor MI (2012) A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486:105–108

    Article  CAS  PubMed  Google Scholar 

  • Huston MA (1979) A general hypothesis of species diversity. Am Nat 113:81–101

    Article  Google Scholar 

  • Ibrahim FN (1988) Ecological imbalance in the Republic of the Sudan—with reference to desertification in Darfur, Bayreuther Geowissenschaftliche Arbeiten, vol 6. Druckhaus Bayreuth Verlagsgessellschaft, Bayreuth

    Google Scholar 

  • IPCC—Intergovernmental Panel on Climate Change (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the 5th Assessment Report. Cambridge University Press, Cambridge

    Google Scholar 

  • Jäger EJ (1977) Veränderungen des Artenbestandes von Floren unter dem Einfluß des Menschen. Biol Rdsch 15(5):287–300

    Google Scholar 

  • Jochimsen ME (1993) Sukzession. In: Kuttler W (ed) Handbuch zur Ökologie. Analytica, Berlin, pp 418–424

    Google Scholar 

  • Joerin UE, Stocker TF, Schlüchter C (2006) Multicentury glacier fluctations in the Swiss Alps during the Holocene. Holocene 16:697–704

    Article  Google Scholar 

  • Kaufman D, McKay N, Kiefer T, von Gunten L (2013) A regional view of global climate change. IGBP’s Global Change magazine, Issue 81

    Google Scholar 

  • Kerr RA (2013) Humans fueled global warming millennia ago. Science 342:918

    Article  CAS  PubMed  Google Scholar 

  • Klötzli F (1993) Ökosysteme, 3. Aufl. Fischer, Stuttgart

    Google Scholar 

  • Knorr W, Schnitzler KG (2006) Enhanced albedo feedback in North Africa from possible combined vegetation and soil-formation processes. Clim Dyn 26:55–63

    Article  Google Scholar 

  • Kottke I, Setaro S, Haug I, Herrera P, Cruz D, Fries A, Gawlik J, Homeier J, Werner FA, Gerique A, Suárez JP (2013) Mycorrhiza networks promote biodiversity and stabilise the tropical mountain rain forest ecosystem: perspectives for understanding complex communities. In: Bendix J, Beck E, Bräunig A, Makeschin F, Mosandl R, Scheu S, Wicke W (eds) Ecosystem services, biodiversity and environmental change in a tropical mountain ecosystem of South Ecuador, Ecological studies, vol 221. Springer, Berlin, pp 187–203

    Chapter  Google Scholar 

  • Kreeb KH (1983) Vegetationskunde. Ulmer, Stuttgart

    Google Scholar 

  • Kreyling J, Jentsch A, Beierkuhnlein C (2011) Stochastic trajectories of succession initiated by extreme climatic events. Ecol Lett 14:758–764

    Article  CAS  PubMed  Google Scholar 

  • Larcher W (2003) Physiological plant ecology—ecophysiology and stress physiology of functional groups, 3rd edn. Springer, Berlin

    Google Scholar 

  • Le Floch E, Le Houerou HN, Mathez J (1990) History and patterns of plant invasion in northern Africa. In: Di Castri F, Hansen AJ, Debussche M (eds) Biological invasion and the Mediterranean basin. Kluwer, Dordrecht, pp 105–133

    Chapter  Google Scholar 

  • Le Houerou HN (1997) Climate, flora and fauna changes in the Sahara over the past 500 million years. J Arid Environ 37:619–647

    Article  Google Scholar 

  • Leps J, Rejmanek M (1991) Convergence or divergence: what should we expect from vegetation succession? Oikos 62(2):261–264

    Article  Google Scholar 

  • Lohmeier W, Sukopp H (1992) Agriophyten in der Vegetation Mitteleuropas. Schriften Vegetationskde 25

    Google Scholar 

  • Loidi J, Fernández-González F (2012) Potential natural vegetation: reburying or reboring? J Veg Sci 23:596–604

    Article  Google Scholar 

  • Lövei GL (1997) Global change through invasion. Nature 388:627–628

    Article  Google Scholar 

  • MacArthur RH, Wilson EO (1967) Biogeographie von Inseln. Wissenschaftliche Taschenbücher, Goldmann, München

    Google Scholar 

  • MacDonald GM, Velichko AA, Kremenetski CV, Andreev A (2000a) History and climate change across northern Eurasia. Quat Res 53:302–311

    Article  Google Scholar 

  • MacDonald GM, Velichko AA, Kremenetski BOK, Goleva AA, Andreev AA, Cwynar LC, Riding T, Forman SL, TWD E, Aravena R, Hammarlund D, Szeicz JM, Gattaulin VN (2000b) Holocene treeline history and climate change across northern Eurasia. Quat Res 53:302–311

    Article  Google Scholar 

  • Mackey RL, Currie D (2001) Diversity-disturbance relationship: is it generally strong and peaked? Ecology 82:3479–3492

    Google Scholar 

  • Marcott SA, Shakin JR, Clark PU, Mix AC (2013) A reconstruction of regional and global temperature for the past 11,300 years. Science 339:1198

    Article  CAS  PubMed  Google Scholar 

  • McCook LJ (1994) Understanding ecological community succession. Vegetatio 110:115–147

    Article  Google Scholar 

  • Miles J (1987) Vegetation succession: past and present perceptions. In: Gray AJ, Crawley MJ (eds) Colonisation, succession and stability. Blackwell Scientific, Oxford, pp 1–29

    Google Scholar 

  • Mora C, Tittensor DP, Adl S, Simpson AGP, Worm B (2011) How many species are there on earth and in the ocean? PLoS Biol 9(8):e1001127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller-Dombois D (1995) Biological diversity and disturbance regimes in island ecosystems. In: Vitousek PM, Loope LL, Andersen H (eds) Islands. Springer, Berlin, pp 163–175

    Chapter  Google Scholar 

  • Müller-Hohenstein K (1973) Die anthropogene Beeinflussung der Wälder im westlichen Mittelmeerraum unter besonderer Berücksichtigung der Aufforstungen. Erdkunde 27:55–68

    Article  Google Scholar 

  • Müller-Hohenstein K (1991) Der Mittelmeerraum. Ein vegetationsgeographischer Überblick. Geogr Rundsch 43(7–8):409–411

    Google Scholar 

  • Müller-Hohenstein K (1993) Auf dem Weg zu einem neuen Verständnis von Desertifikation—Überlegungen aus der Sicht einer praxisorientierten Geobotanik. Phytocoenologia 23:499–518

    Article  Google Scholar 

  • Murphy GEC, Romanuk TN (2014) A meta-analysis of declines in local species richness from human disturbances. Ecol Evol 4:91–103

    Article  PubMed  Google Scholar 

  • Neumann K (1988) Die Bedeutung der Holzkohlenuntersuchungen für die Vegetationsgeschichte der Sahara—das Beispiel Fachi/Niger. Würzb Geogr Arb 69:71–85

    Google Scholar 

  • Nicholson SE (1978) Climatic variations in the Sahel and other African regions during the past five centuries. J Arid Environ 1:3–24

    Article  Google Scholar 

  • Odum EP (1980) Grundlagen der Ökologie. Bd 1. Thieme, Stuttgart

    Google Scholar 

  • Overbeck F (1975) Botanisch-geologische Moorkunde unter besonderer Berücksichtigung der Moore Nordwestdeutschlands als Quellen zur Vegetations-, Klima- und Siedlungsgeschichte. Wacholtz, Neumünster

    Google Scholar 

  • Pickett STA, White PS (1985) The ecology of natural disturbance and patch dynamics. Academic Press, New York

    Google Scholar 

  • Pignatti E, Pignatti S (1984) Sekundäre Vegetation und floristische Vielfalt im Mittelmeerraum. Phytocoenologia 12:351–358

    Article  Google Scholar 

  • Pimm SL (1984) The complexity and stability of ecosystems. Nature 307:321–326

    Article  Google Scholar 

  • Prentice IC, Jolly D (2000) Mid-Holocene and glacial-maximum vegetation geography of northern continents and Africa. J Biogeogr 27:507–519

    Article  Google Scholar 

  • Pretzsch H (2005) Diversity and productivity in forests: evidence from long-term experimental plots. In: Scherer-Lorenzen M, Körner C, Schulze E-D (eds) Forest diversity and function. Temperate and boreal systems, vol 176. Springer, Berlin, pp 41–64

    Chapter  Google Scholar 

  • Remmert H (ed) (1991) The mosaic-cycle concept of ecosystems. Springer, Berlin

    Google Scholar 

  • Richter M (1997) Allgemeine Pflanzengeographie. Teubner, Stuttgart

    Google Scholar 

  • Riera-Mora S, Esteban-Amat A (1994) Vegetation history and human activity during the last 6000 years on the central Catalan coast (northeastern Iberian peninsula). Veg Hist Archaeobotany 3:7–23

    Article  Google Scholar 

  • Scherer-Lorenzen M, Elend A, Nöllert S, Schulze E-D (2000) Plant invasions in Germany—general aspects and impact of nitrogen deposition. In: Mooney HA, Hobbs RJ (eds) Invasive species in a changing world. Island Press, Washington, DC, pp 351–368

    Google Scholar 

  • Schmidt G (1969) Vegetationsgeographie auf ökologisch-soziologischer Grundlage: Einführung und Probleme. Teubner, Leipzig

    Google Scholar 

  • Schmidt W (1993) Sukzession und Sukzessionslenkung auf Brachäckern—neue Ergebnisse aus einem Dauerflächenversuch. Scripta Geobot 20:65–104

    Google Scholar 

  • Schreiber KF (1995) Renaturierung von Grünland—Erfahrungen aus langjährigen Untersuchungen und Managementmaßnahmen. Ber Tüxen-Ges 7:111–113

    Google Scholar 

  • Schulze ED, Aas G, Grimm GW, Gossner MM, Walentowski H, Ammer C, Kühn I, Bouriaud O, von Gadow K (2016) A review on plant diversity and forest management of European beech forest. Eur J For Res 135:51–67

    Article  Google Scholar 

  • Schweingruber F, Poschlod P (2005) Growth rings in herbs and shrubs: life span, age determination and stem anatomy. Forest Snow Landsc Res 79:195–415

    Google Scholar 

  • Stone L, Ezrati I (1996) Chaos, cycles and spatio-temporal dynamics in plant ecology. J Ecol 84:279–291

    Article  Google Scholar 

  • Strasburger E, Sitte P (1998) Lehrbuch der Botanik für Hochschulen. Fischer, Stuttgart

    Google Scholar 

  • Sukopp H (1972) Wandel von Flora und Vegetation in Mitteleuropa unter dem Einfluß des Menschen. Ber Landwirtsch 50(1):112–139

    Google Scholar 

  • Sukopp H, Wittig R (eds) (1998) Stadtökologie, 2nd edn. Gustav Fischer, Stuttgart

    Google Scholar 

  • Sun D, Joachimski MM, Wignall PB, Yan C, Chen Y, Jiang H, Wang L, Lai X (2012) Lethally hot temperatures during the early triassic greenhouse. Science 338:366–370

    Article  CAS  PubMed  Google Scholar 

  • Swift MJ, Anderson JM (1993) Biodiversity and ecosystem function in agricultural systems, Ecological studies, vol 99. Springer, Berlin, pp 15–41

    Google Scholar 

  • Tilman D (1982) Resource competition and community structure. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Tilman D (1988) Plant strategies and the dynamic and structure of plant communities. Princeton University Press, Princeton

    Google Scholar 

  • Tilman D (1990) Constraints and tradeoffs: towards a predictive theory of competition and succession. Oikos 58:3–15

    Article  Google Scholar 

  • Tilman D (1994) Community diversity and succession: the roles of competition, dispersal, and habitat modification. In: Schulze ED, Mooney HA (eds) Biodiversity and ecosystem function. Springer, Berlin, pp 327–344

    Chapter  Google Scholar 

  • Tilman D, Wedin D (1991a) Plant traits and resource reduction for five grasses growing on anitrogen gradient. Ecology 72:685–700

    Article  Google Scholar 

  • Tilman D, Wedin D (1991b) Dynamics of nitrogen competition between successional grasses. Ecology 72:1038–1049

    Article  Google Scholar 

  • Tüxen R (1956) Die heutige potentielle natürliche Vegetation als Gegenstand der Vegetationskartierung. Angew Pflanzensoziol 13:5–42

    Google Scholar 

  • Vitousek M, Mooney HA, Lubchenko J, Melillo JM (1997) Domination of earth’s ecosystems. Science 277:494–499

    Article  CAS  Google Scholar 

  • Walter H (1986) Allgemeine Geobotanik. Eugen Ulmer, Stuttgart

    Google Scholar 

  • Walter H, Straka H (1970) Grundlagen der Pflanzenverbreitung. Bd 3,2. Arealkunde (Floristisch-historische Geobotanik), 2. Aufl. Ulmer, Stuttgart

    Google Scholar 

  • Wanner H, Beer J, Bütikofer J, Crowley TJ, Cubasch U, Flückiger J, Goosse H, Grosjean M, Joos F, Kaplan JO, Küttel M, Müller SA, Prentice IC, Solomina O, Stocker TF, Tarasov P, Wagner M, Widmann M (2008) Mid- to late Holocene climate change: an overview. Quat Sci Rev 27:1791–1828

    Article  Google Scholar 

  • Watt AS (1947) Pattern and process in the plant community. J Ecol 35:1–22

    Article  Google Scholar 

  • WBGU (Wissenschaftlicher Beirat der Bundesregierung Globale Umweltveränderungen) (2000) Welt im Wandel: Erhaltung und nachhaltige Nutzung der Biosphäre. Springer, Berlin

    Book  Google Scholar 

  • Weiss H, Bradley RS (2001) What drives societal collapse? Science 291:609–610

    Article  CAS  PubMed  Google Scholar 

  • van der Maarel E (1988) Vegetation dynamics: patterns in time and space. Vegetatio 77:7–19

    Article  Google Scholar 

  • van der Maarel E, Sykes MT (1993) Small scale species turnover in a limestone grassland: the carousel model and some comments on the niche concept. J Veg Sci 4:179–188

    Google Scholar 

  • von Wissmann H (1957) Ursprungsherde und Ausbreitungswege von Pflanzen- und Tierzucht und ihre Abhängigkeit von der Klimageschichte. Erdkunde 11:175–193

    Google Scholar 

  • Wittkamp J, Deil U, Beierkuhnlein C (1995) Sozialstruktur und Dorfvegetation—im Vergleich von Dörfern beiderseits der ehemaligen innerdeutschen Grenze. Erde 126:107–126

    Google Scholar 

  • Zwölfer H (1978) Mechanismen und Ergebnisse der Co-Evolution von phytophagen und entomophagen Insekten und höheren Pflanzen. Sonderb Naturwiss Ver Hamburg 2:7–50

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schulze, ED., Beck, E., Buchmann, N., Clemens, S., Müller-Hohenstein, K., Scherer-Lorenzen, M. (2019). Development of Plant Communities in Time. In: Plant Ecology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56233-8_17

Download citation

Publish with us

Policies and ethics